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Abstract: The present study evaluated the microbiological risk for roof-harvested rainwater 

(RHRW), with Campylobacter as the pathogenic microorganism of reference, using a Quantitative 

Microbial Risk Assessment (QMRA). QMRA has been widely used as an alternative method for 

epidemiological assessment of human exposure to microorganisms that can cause diseases, 

through a four-step process: hazard identification, exposure assessment, dose-response 

assessment, and risk characterization. The results presented drinking as the water use with the 

highest median value for microbiological risk, with 3.4 x 10-04 DALY per person per year, and 

bathing, food washing, hose irrigation and toilet flushing with median values of 6.5 x 10-07, 4.0 x 

10-07, 2.1 x 10-07 and 1.4 x 10-07 DALY pppy, respectively. Therefore, drinking would be the only 

water use that would require preliminary treatment for its safe use, considering the acceptable risk 

standards set by the World Health Organization for drinking water. However, with the adoption of 

a sanitary barrier and a simple point-of-use treatment system, it was observed that drinking 

rainwater would have a median microbiological risk of 2 x 10-06 DALY pppy, enough to meet the 

safety criteria considering developing countries.  

Keywords: risk assessment, rainwater harvesting, drinking water 

 

1. Introduction 

Roof-harvested rainwater (RHRW) has been increasingly adopted as an alternative water 

supply for domestic uses, including drinking, especially in rural areas of developing countries [1,2]. 

In Brazil, for example, since 2003, more than 588,000 cisterns were built in order to provide safe 

water for rural communities in Northeast that do not have access to centralized water supply 

systems [3].  

However, there is an ongoing debate whether RHRW should be used as drinking water [4]. 

Some epidemiological studies suggest that consumption of untreated rainwater do not contribute to 

the incidence of disease in a community [5,6], while others have documented contamination in 

stored rainwater, posing a definitive public health risk if consumed without treatment [7-9]. 

The World Health Organization (WHO) has created drinking water guidelines to ensure the 

provision of high-quality water around the world [10]. In order to satisfy these limits, especially 

regarding microbiological contaminants, chlorine has been applied in rainwater cisterns as a 

disinfection method in Brazil, raising the concern about consumption of chlorination by-products in 

drinking water, which are associated with cancer in humans [11-15]. 
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In this context, there is an increasing need to assess human health risks associated with RHRW 

exposure, especially in developing countries, where its use is becoming more widespread. The 

Quantitative Microbiological Risk Assessment (QMRA) approach apply risk assessment principles 

to estimate the effects of human exposure to infectious microorganisms in different scenarios [16], 

and has been used worldwide to establish guidelines and recommendations for water quality 

(WHO, 2011), with many studies focusing on rainwater [7,8,17].  

This study aims to assess the human health risks from untreated RHRW domestic use through 

the QMRA method, and analyze the overall impact for the adoption of a sanitary barrier and a 

point-of-use device to improve rainwater quality on RHRW systems.  

 

2. Methods 

2.1. Literature review 

Data collection regarding pathogen concentration in RHRW was conducted by searching 

web-based databases and governmental agencies’ websites for key words such as ‘roof-harvested 

rainwater’, ‘pathogens’, ‘health’, and ‘risk’. The literature review did not have any geographical 

restrictions, although English-language papers were the major source of information. 

 

2.2. Quantitative Microbial Risk Assessment (QMRA)  

A QMRA framework was applied to assess the potential microbial health risks associated with 

the following proposed uses for RHRW: bathing, food washing, hose irrigation, toilet flushing and 

drinking. Where possible, input data have been represented as probability distributions rather than 

point-estimates in order to reduce uncertainty. A Monte Carlo sampling composed of 10,000 

iterations was used for simulations using the software @Risk version 4.5 Professional edition 

(Palisade Corporation 2002). 

Results for health impacts were quantified using disability-adjusted life year (DALYs). DALYs 

are a summary measure of a population’s health, allowing comparison of effects across a wide range 

of health outcomes.  The measure combines years of life lost (YLL) as a result of premature 

mortality, with years lived with a disability (YLD), standardized using severity weights with a range 

from 0 (perfect health) to 1 (dead) [18-21].  

The QMRA addresses a quantitative approach through simulation techniques and scenario 

modeling, following a four-step process [16], divided into: hazard identification and 

characterization, exposure assessment, dose-response evaluation, and risk characterization. 

 

2.3. Hazard identification 

The main source of waterborne pathogens in RHRW in Brazil is likely to be from faecal 

droppings from birds and other animals with roof habits. Other possible routes from the catchment 

surface, according to Sanchez et al. [22], include deposits of dirt, lichens and mosses, fungus or fallen 

vegetable material from the surrounding trees.  

From the literature review, the most commonly found microorganisms in stored RHRW are 

Campylobacter, Cryptosporidium, Salmonella, Giardia, Escherichia coli and Enterococcus, all major 

etiological agents of gastroenteritis worldwide [23-27].   

Campylobacter ssp. is linked with zoonosis in birds and animals that inhabit or transit on the 

roofs [28,29], being one of the most important causes of acute gastroenteritis worldwide [10]. In 

addition, it has been isolated from rainwater supplies (Table 1) and implicated in illness from 

rainwater supplies used for drinking water [30]. So, for this study, Campylobacter ssp. was used as 

the pathogen of reference for the QMRA. 
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Table 1. Presence of Campylobacter in stored RHRW from different sources. 

Samples 

tested 

Positive 

samples 

Frequency of 

contamination (%) 

Concentration 

(MPN/L) 

27 11 40.7% n.a. [31] 

10 1 10.0% <3-43 [32] 

27 10 37.0% n.a. [33] 

100 20 20.0% n.a. [7] 

115 0 0.0% n.a. [34] 

24 5 20.8% 5-100 [35] 

17 2 11.8% n.a. [36] 

24 9 37.5% <0.6-5.6 [37] 

32 3 9.4% 26-240 [38] 

100 3 3.0% 0-0.056 [20] 

 

2.4. Exposure assessment 

A literature review has been conducted to gather data regarding exposure routes for 

Campylobacter infection and intake volumes associated with each of the proposed domestic uses for 

RHRW. Infection routes may include liquid ingestion due to drinking, accidental liquid ingestion 

due to hose irrigation and food washing, aerosol ingestion due to showering, and by direct contact 

with water. 

Volume ingested, and exposure duration and frequency for drinking were taken from the 

publication titled “Exposure Factors Handbook” from the American Environmental Agency [39]. 

Parameters of exposure for hose irrigation and food washing were taken from Ahmed et al. [7]. Data 

for toilet flushing were taken from Ashbolt et al. [40] and Fewtrell et al. [20]. Finally, data from 

Cohim et al. [17] was used for exposure assessment for bathing.  

The input data used for exposure assessment is summarized in Table 2.  

 

2.5. Dose-response assessment 

Pathogen ingestion was calculated using Equation 1, based on the probability distributions for 

parameters from the exposure assessment. The equation used is expressed as: 

d = N . Ving, (1) 

where: 

d = Dose of pathogens ingested in one exposure (MPN.day-1); 

N = Pathogen concentration in RHRW (MPN.mL-1); 

Ving = Volume of RHRW ingested in one exposure (mL.day-1). 

 

The mathematical model used to relate the ingested dose with its outcome varies depending on 

the pathogen considered. A dose-response β-poisson model for Campylobacter ssp. has been 

developed by Medema et al. [41] and it is presented in Equation 2.  

Pinf = 1 – [1+(d/N50)]/[2^(1/ α) – 1]^( -α), (2) 

where: 

Pinf = probability of infection for one exposure; 

N50 = microbial dose eliciting 50% infections in the exposed population = 896 [41]; 

α = slope parameter = 0,145 [41]. 

 



Proceedings 2017, 1, x 4 of 10 

 

2.3. Risk characterization 

Risk characterization encompasses all the previous steps (hazard characterization, 

dose-response assessment and exposure-assessment) to determine the probability of infection and 

illness.  The annual probability of infection is calculated using Equation 3: 

Pt = 1 - (1 - Pinf)^t, (3) 

where: 

Pt = annual probability of infection;  

Pinf = probability of infection for one exposure; 

t = number of exposures in one year. 

 

To estimate the annual probability of disease, i.e. the number of disease cases per person per 

year, it has been assumed that 70% of infections result in illness [42], as seen in Equation 4.  

  Pd = K . Pt,   (4) 

where: 

Pd = annual probability of ilness; 

K = disease/infection ratio = 0.7 [42]. 

 

Based on probability of illness, results of case of disease for each use were transformed in DALY 

loss per person per year (pppy). We have adopted a value of DALY loss per case of disease of 4.6 x 

10-03 for Campylobacter [42]. 

The distributions and @Risk input values used in the QMRA are shown in Table 2. 

 

Table 2. @Risk input values 

Input Distribution Mean Median Mode 
Standard 

deviation 
Range 

Campylobacter concentration 

(mL) 
Lognormal - 5.6 - - 0-240 

Volume ingested (mL) 

  Drinking Triangular - 2500 - - 1400-3600 

  Bathing (mL/min) Normal 0. 5 - - 0. 2 - 

  Food washing Normal 0. 5 - - 0. 1 - 

  Hose irrigation Lognormal 1.0 - - 0. 1 - 

  Toilet flushing Triangular - - 0. 1 - 0. 01-0. 5 

Exposure duration (minutes) 

  Bathing Lognormal - 3 - - 0.9-44 

Frequency of use (#/day) 

  Bathing Lognormal 0.9 - - - 0.1-5 

  Food washing Triangular - 4 - - 2.0-6 

  Hose irrigation Lognormal - 3 - - 1.0-7 

  Toilet flushing Triangular - 4 - - 2.0-6 

 
 

3. Results and discussion 

The risks for the proposed domestic uses for RHRW are summarized in Table 3, both in 

probability of illness and DALYs pppy. 
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Table 3. Median values of annual risk for different RHRW uses 

Proposed water use Probability of illness DALY pppy 

Drinking 7.39 x 10-02 3.40 x 10-04 

Bathing 1.41 x 10-04 6.50 x 10-07 

Food washing 8.70 x 10-05 4.00 x 10-07 

Hose irrigation 4.57 x 10-05 2.10 x 10-07 

Toilet flushing 3.04 x 10-05 1.40 x 10-07 

 
As expected, drinking untreated RHRW had the highest microbiological estimated risk, with a 

value of 3.40 x 10-04 DALY pppy. All the other uses (bathing, food washing, hose irrigation and toilet 

flushing) had results in the order magnitude of 10-07. Therefore, only drinking untreated RHRW 

would not satisfy the microbiological risk limit suggested by the WHO for drinking water of 10-06 

DALY pppy. 

However, there has been a discussion on whether this limit would be the most appropriate, 

especially for developing countries [43]. The WHO itself admits that this target may not be 

achievable or realistic in some locations and circumstances in the near term, where the overall 

burden of disease is high for multiple exposure routes (water, food, air, etc.). In these cases, setting 

this limit from water-borne exposure alone would not have a big impact on the overall disease 

burden, and more contextualized values could be established [10]. For Brazil, for example, the risk of 

drinking untreated RHRW is significantly lower than 1.8 x 10-02 DALY pppy, which represents the 

DALY loss from tobacco-related diseases in 2015 [44]. 

Therefore, to evaluate the severity of consequences from the estimated risks, we adopted the 

classification proposed by Westrell et al. [45] (Table 4), based on the increase of endemic disease in 

the community caused by RHRW use. Studies estimate a median value of 3 to 5 episodes of 

diarrhoea per child per year for children under 5 years of age in developing countries [46-51]. We 

adopted a median value of 4 episodes of diarrhoea per person per year for Brazil. 

 
Table 4. Suggested definitions of severity of consequences of hazard based on increase of endemic disease in 

the community [45]. 

Item Definition 

Catastrophic Major increase in diarrhoeal disease >25% or >5% increase in more severe 

disease or large community outbreak (100 cases) or death 

Major Increase in more severe diseases (0.1-5%) or large increase in diarrhoeal 

disease (5-<25%) 

Moderate Increase in diarrhoeal disease (1-<5%) 

Minor Slight increase in diarrhoeal diseases (0.1-<1%) 

Insignificant No increase in disease incidence (<0.1%) 

 
Based on the increase of disease cases (Table ), drinking RHRW without any treatment would 

represent a 1.85% increase, with a hazard classified as ‘moderate’ by Westrell et al. [45]. 

 
Table 5. Severity consequences for the RHRW proposed uses 

Proposed water use Probability of illness 
Increase of 

disease cases 
Hazard 

Drinking 7.39 x 10-02 1.85% Moderate 

Bathing 1.41 x 10-04 0.004% Insignificant 

Food washing 8.70 x 10-05 0.002% Insignificant 

Hose irrigation 4.57 x 10-05 0.001% Insignificant 

Toilet flushing 3.04 x 10-05 0.001% Insignificant 
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Once the health risks for the domestic use of untreated RHRW have been estimated, the 

adoption of measures to increase the quality of rainwater was tested. The adoption of a rainwater 

first-flush diverter device for the catchment system, and the use of a ceramic water filter, a simple 

point-of-use treatment for drinking water, were considered given their good public acceptance and 

due to the fact they do not require high maintenance for their operation.  

Many studies have evaluated the efficiency of rainwater first-flush diverter devices (Table ), 

and ceramic water filters (Table ), showing effective contaminant removal and water quality 

improvement, proving their potential as measures to improve RHRW quality. Based on the 

literature, we have estimated a pathogen removal efficiency for Campylobacter of 96% and 93%, for 

rainwater fist-flush diverters and ceramic water filters, respectively. 

 
Table 6. Pathogen removal efficiency for rainwater first-flush systems 

Pathogen Removal efficiency 

Total coliforms 95.5 % [52] 

 

96.5% [53]  

96.5% [54] 

Thermostable coliforms 100% [55] 

E. coli 80% [56] 

 100% [54] 

 100% [53] 

 90% [57] 

Heterotrophic bacteria 94.39% [52] 

Salmonella 100% [57] 

 
Table 7. Pathogen removal efficiency for ceramic water filters 

Pathogen Removal efficiency 

E coli 97.8% [58] 

85% [59] 

99% [60] 

Vibrio spp. 100% [59] 

Shigella spp. 93% [59] 

Salmonella 86% [59] 

 
Values for health risks were then calculated and the hazards characterized based on increase of 

disease cases considering the adoption of each sanitary barrier and, for drinking water, with both of 

them (Table ). 

 
Table 8. Median values of annual risk considering the adoption of sanitary barriers 

Proposed 

water use 
Sanitary barrier 

Probability 

of illness 
DALY 

Increase 

of disease 
Hazard 

Drinking First-flush diverter 6,30 x 10-03 2,92 x 10-05 0.16% Minor 

Ceramic filter 7,61 x 10-03 3,50 x 10-05 0.19% Minor 

Both 4,35 x 10-04 2,00 x 10-06 0.01% Insignificant 

Bathing First-flush diverter 7,83 x 10-06 3,60 x 10-08 0.000% Insignificant 

Food washing First-flush diverter 5,00 x 10-06 2,30 x 10-08 0.000% Insignificant 

Hose irrigation First-flush diverter 2,61 x 10-06 1,20 x 10-08 0.000% Insignificant 

Toilet flushing First-flush diverter 1,74 x 10-06 8,00 x 10-09 0.000% Insignificant 
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Results show that the estimated health risks for drinking RHRW would drop from 3.4 x 10-04 to 

2.92 x 10-05 DALY and 3.5 x 10-05 DALY pppy by using rainwater first-flush diverter and ceramic 

water filter, respectively. When considered together, it was possible to achieve a risk reduction from 

3.4 x 10-04 to 2 x 10-06 DALY pppy, a significant gain in safety, nearly satisfying the WHO guidelines 

for drinking water, with no need for disinfection through chlorination. 

 

3. Conclusion 

Based on a literature survey, we conducted a QMRA study on untreated RHRW use for 

domestic purposes. Our results indicated drinking RHRW as the only domestic water use that are 

not in conformity with the WHO guidelines for drinking water, even so, drinking untreated RHRW 

would only represent 1.85% of increase in disease cases in Brazil. 

The adoption of simple sanitary barriers such as rainwater first-flush diverters and point-of-use 

treatment systems such as ceramic water filters, have proved to be sufficient to reduce the health risk 

for drinking untreated RHRW to levels that nearly satisfy the WHO guidelines. Such results rise the 

discussion of adopting a tolerable risk for drinking water that respects regional characteristics, 

especially in developing countries, in detriment of chlorination for residential rainwater catchment 

systems. 
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