ATP metabolism in RBC as potential biomarker for post-exercise hypotension and a therapeutic target for cardiovascular drugs

Pollen Yeung *, Fatemeh Akhoundi, Sheyda Mohammadizadeh and Brett Linderfield

Pharmacokinetics and Metabolism Laboratory, College of Pharmacy, Dalhousie University, Halifax, NS, Canada B3H 4R2

* Corresponding author: Pollen.Yeung@dal.ca
ATP metabolism in RBC as potential biomarker for post-exercise hypotension and a therapeutic target for cardiovascular drugs

- Breakdown of ATP to AMP in the RBC is a potential biomarker for serious cardiovascular toxicity and/or mortality

- Preserving ATP in the RBC is a potential drug target for cardiovascular protection

Effect of exercise pre-conditioning on AMP concentrations in RBC in an experimental rat model of acute MI in vivo
Adenosine /ATP Transport and Metabolism
Effect of Exercise on ATP Metabolism in RBC

Treadmill exercise 15 min at a speed of 10 m/min and 5% grade
Effect of Exercise in SDR vs SHR
Yeung, P. K et al. Effect of acute exercise on cardiovascular hemodynamic and red blood cell concentrations of purine nucleotides in hypertensive compared with normotensive rats. Therapeutic Advances in Cardiovascular Disease 7(2):63-74, 2013.
Correlations between RBC [ATP] and DBP post exercise

Yeung, P. K et al. Effect of acute exercise on cardiovascular hemodynamic and red blood cell concentrations of purine nucleotides in hypertensive compared with normotensive rats. Therapeutic Advances in Cardiovascular Disease 7(2):63-74, 2013.
Effect of exercise on RBC adenine nucleotide concentrations in healthy subjects

The examined individuals were subjected to a continuous effort test with progressively increasing intensity (up to a refusal) on a cycloergometer.
Acute MI Model induced by Isoproterenol

- Isoproterenol (30 mg/kg) by sc injection
- 10 blood samples taken (0.3 mL each) for measurement of biomarkers
- 50 % mortality
Acute MI Model induced by Isoproterenol

- Isoproterenol (30 mg/kg) by sc injection
- 10 blood samples taken (0.3 mL each) for measurement of biomarkers
- 50 % mortality
Effect of Cardiovascular Injury on ATP and Adenosine Metabolism in RBC

Baseline Concentrations

After Isoproterenol Injection (30 mg/kg ip)
Effect of Cardiovascular Injury on ATP and Adenosine Metabolism in RBC

- Tmax of adenosine (ADO) and uric acid (UA) after isoproterenol was shorter (ca 1hr) than the Tmax of ADP and AMP after isoproterenol (ca. 2 hr)

- ADO and UA in the plasma pool were produced from other sites in addition to the RBC
Rat Model for Exercise Preconditioning Study
Effect of Exercise Pre-conditioning on Cardiovascular Hemodynamics and ATP Metabolism in RBC

LowEx = 15 min at 10 m/m and 10% grade
Mortality = 2 of 7
VigEx = 15 min at 14 m/min and 22% grade
Mortality = 2 of 8
NoEx Mortality = 5 of 10
NoIso Mortality = 0 of 10
Effect of Exercise Preconditioning (VigEx) on Cardiovascular Protection

LowEx = 15 min at 10 m/m and 10% grade
Mortality = 2 of 7

VigEx = 15 min at 14 m/min and 22% grade
Mortality = 2 of 8

NoEx Mortality = 5 of 10
NoIso Mortality = 0 of 10
Effect of Diltiazem (DTZ) on cardiovascular toxicities induced by isoproterenol

Mortality (Control) = ca 50%

Mortality (DTZ) = < 20%
Conclusions

- ATP metabolism in RBC is potential biomarker for post-exercise hypotension
- Breakdown of ATP in the RBC is a potential biomarker for serious cardiovascular toxicity and/or mortality
- Rebound of blood pressure induced by isoproterenol is a potential biomarker for serious cardiovascular toxicity
- Preserving ATP in the RBC is a potential drug target for cardiovascular protection
Challenges and Opportunities for ATP metabolism as Biomarker target

Challenges

- Instability of ATP and adenosine in blood samples.
- Blood samples need to be collected carefully to avoid damage to blood cells.
- Blood samples need to be processed immediately after collection using a suitable “Stopping Solution”

Opportunities

- Disease and health management:
 - May be a measure of “Inner Energy”, “Reserves”, and “Cardiovascular homeostasis”
 - Cardiovascular and metabolic diseases, cancer, aging, stroke and other neurodegenerated diseases.
- Drug development:
 - Cardiovascular protective agents (ARB, ACEI, CCB, rennin and thrombin inhibitor, anti-platelet agent, B-blocker, ant-coagulant, NHP, and others)
 - Anti-cancer agents and cardiovascular toxicities
 - Antibiotics and anti-inflammatory agents
- Complementary medicine:
 - Natural health products.
 - Traditional Chinese medicines
 - Energy supplements
Acknowledgments

Pharmacokinetics & Metabolism Laboratory

Dr. Ban Tsui, Susan Mosher (Buckley), Joe Feng, Mei Xei, Dr. Yushan Wang, Lixia Ding, Dr. Angelita Alcos, Dr. Jinglan Tang, Julie Dauphinee, Tanya Marcoux, Dena Seeto, Haijun Li, Shyam Kolathuru, Sheyda Maryamossadat Mohammadizadeh, and many undergraduate pharmacy and science co-op students

Sponsors

CIHR (MRC), NSHRF, DPEF, H&SF, Health Canada, Sanofi-Aventis Pharma, Biovail Corp., Ocean Nutrition Canada, MedMira Lab

Collaborators

Drs. Terrence Montague, Gerald Klassen, Orlando Hung, Timothy Pollak, Mike Quilliam, Pat Farmer, Bill Casley, Remi Agu, Jason Berman, Amyl Ghanem, Zhaolin Xu, Christian Lehmann and Thomas Pulinilkunnil

Drs. Christoph Schindler (Germany), Peicheng Zhang (China), Ping-Ya Li (China), Jodi Tinkel (USA)