

21 ${ }^{\text {st }}$ November - $1^{\text {st }}$ December 2017
Dr. rer.nat. Georg J. Schmitz,
MICRESS ${ }^{\circledR}$ group at ACCESS e.V.

There are different senses of entropy*:

- Thermodynamic Sense
- Information Sense
- Statistical Sense
- Disorder Sense
- Homogeneity Sense

Especially the "disorder" and "homogeneity" senses are related to and even require the notion/specification/definition of space

Only few formulas for Entropy comprise spatial aspects/entities

One example for an entropy formula comprising spatial entities is the Bekenstein-Hawking entropy $\mathrm{S}_{\text {BH }}$ which in its dimensionless form* reads:
$\mathbf{S}_{\text {Bн }}$: dimensionless
Bekenstein-Hawking entropy

1/4: important factor

A: area of the event horizon/ surface area of the black hole
L_{p} : Planck length/ a small positive number having the dimension of a length

In spite of describing a physics object - a black hole - having mass, charge spin etc. this formula only contains geometric entities

Objective of the presentation is to derive the structure of this formula based on geometric considerations.

The Heaviside function

The approach starts from the Heaviside function* $\Theta\left(x_{0}\right)$:

which can be used to describe a sphere or any other geometric object.
The volume V of a sphere with radius r_{0} in spherical coordinates is then given by:

$$
V=\iiint \Theta\left(r-r_{0}\right) r^{2} d r d \Omega=\frac{4}{3} \pi r_{0}^{3}
$$

with $\mathrm{d} \Omega$ being the differential solid angle: $\sin \Theta d \Theta d \varphi=d \Omega$

The δ function

The Dirac δ function actually is defined* as the distributional derivative of the Heaviside function $\Theta(x)$ as

$$
\delta(x):=\frac{d \Theta(x)}{d x}
$$

Using the δ function the surface A of the sphere - and also the surface of more complex geometric objects - can easily be calculated:

$$
A=\iiint \delta\left(r-r_{0}\right) r^{2} d r d \Omega=4 \pi r_{0}^{2}
$$

This approach thus has allowed to calculate the area "A" as the first step towards deriving the entropy of a geometric sphere

$$
S_{G S}=\frac{A}{4 l_{p}^{2}}
$$

In fact, however, nothing has been said by now about entropy.
The next steps will have a closer look at the transition region of the Heaviside function and introduce the phase-field function

The phase field description of a transition

The Heaviside function varies discontinuously from 1 to 0 in an infinitesimally small transition region. Nothing is thus known about the shape of this function in the transition region.

The phase- field variable Φ in contrast varies continuously from 1 to 0 in the transition region with finite width η

The shape of the transition in phase-field models depends on the choice of the potential. A double-well potential e.g. leads to a hyperbolic- tangent profile while a double obstacle potential leads to a cosine profile of the Φ function

However, nothing is a priori known about the shape of this function in the transition region also in phase-field models.

Can we learn more about the interface region?

The Phase-field function Φ can be considered as a contineous formulation of the Heaviside function Θ if the interface thickness η becomes infinitesimally small.

Is there a rationale for the shape of both the Heaviside and the phase-field functions in the transition region?

Entropy of a single interface layer: the Jackson Model

The Jackson model*:

- is used to describe facetted growth of crystals
- assumes ideal mixing of the two states (solid/liquid) in a single interface layer between the bulk states
- describes the entropy of the interface as:

$$
S=\Phi \ln \Phi+(1-\Phi) \ln (1-\Phi)
$$

- which generates $\Phi=0.5$ as the most probable value

The Kossel model*:

- is a discrete model
- is used to describe the growth of crystals with diffuse interfaces
- assumes attachment of solid on existing solid only (no overhang)
- describes a stepwise transition from 100% solid (the 4 left layers) to 100% liquid (from layer 11 to the right)
- provides the basis for Temkin's discrete formulation of the entropy of a diffuse interface

Entropy of a diffuse interface: the Temkin Model

The Temkin model*:

- is used to describe growth of crystals with diffuse interfaces
- assumes ideal mixing between two adjacent states/layers in a multilayer interface
- describes the entropy of the diffuse interface as:

$$
S=-\sum_{n=-\infty}^{\infty}\left(\Phi_{n-1}-\Phi_{n}\right) \ln \left(\Phi_{n-1}-\Phi_{n}\right)
$$

- recovers the Jackson model as a limiting case for a single interface layer

Highlighting the importance of the Temkin model

The Temkin model:

The gradient in the
Temkin model is identified as follows:

- introduces neighborhood relations between adjacent layers and thus an "order" resp. „disorder" sense
- introduces a gradient and thus a length scale into the formulation of entropy
- can be extended to a continuous formulation
- can be extended to 3 dimensions

$$
d \Phi_{n}=\Phi_{n-1}-\Phi_{n}=\int_{n l}^{(n-1) l} \frac{d \Phi}{d r} d r=\frac{d \Phi_{n}}{d r} \int_{n l}^{(n-1) l} d r=l \frac{d \Phi_{n}}{d r}
$$

with „"" being the distance between two adjacent layers and the gradient being assumed as constant between these two layers

From discrete to continuous*

$$
\begin{gathered}
r(n)=r_{0}+n l \text { and } d n=\frac{d r}{l} \\
S=-\sum_{n=-\infty}^{\infty}\left(\Phi_{n-1}-\Phi_{n}\right) \ln \left(\Phi_{n-1}-\Phi_{n}\right)=-\sum_{n=-\infty}^{\infty}\left\{l \frac{d \Phi}{d r}(n l)\right\} \ln \left\{l \frac{d \Phi}{d r}(n l)\right\}
\end{gathered}
$$

Making the transition from discrete to continuous:

$$
-\sum_{n=-\infty}^{\infty}\left\{l \frac{d \Phi}{d r}(n l)\right\} l n\left\{l \frac{d \Phi}{d r}(n l)\right\} \rightarrow-\int_{-\infty}^{\infty}\left\{l \frac{d \Phi}{d r}(n l)\right\} \ln \left\{l \frac{d \Phi_{n}}{d r}(n l)\right\} d n
$$

and substituting: $\quad n l=r-r_{0}$ and $d n=\frac{d r}{l}$
in 1 dimension yields: $\quad S=-\int_{-\infty}^{\infty}\left\{l \nabla_{r} \Phi\left(r-r_{0}\right)\right\} \ln \left\{l \nabla_{r} \Phi\left(r-r_{0}\right)\right\} \frac{d r}{l}$

Extending to 3D

extending the formulation to 3 dimensions in cartesian coordinates reads:

$$
S=-\iiint_{-\infty}^{\infty}(\overrightarrow{\mathrm{l}} \vec{\nabla} \phi) \ln (\overrightarrow{\mathrm{l}} \vec{\nabla} \phi) \frac{d x}{l_{x}} \frac{d y}{l_{y}} \frac{d z}{l_{z}}
$$

Assuming isotropy of space resp. of the discretization i.e. $l_{x}=l_{y}=l_{z}=l_{p}$ eventually leads to

$$
S=-\iint_{-\infty}^{\infty} \int_{-\infty}^{(\vec{I} \vec{\nabla} \phi) \ln (\overrightarrow{I \nabla} \phi)} \frac{l_{p}^{3}}{l} d x d y d z
$$

The term

$$
s=\frac{(\overrightarrow{\mathrm{l}} \vec{\nabla} \phi) \ln (\overrightarrow{\mathrm{l}} \vec{\nabla} \phi)}{l_{p}^{3}}
$$

can be interpreted as an entropy density.

Extending to 3D in spherical coordinates

$$
S=-\iiint_{-\infty}^{\infty}(\overrightarrow{\mathrm{l}} \vec{\nabla} \phi) \ln (\overrightarrow{\mathrm{l}} \vec{\nabla} \phi) \frac{d x}{l_{x}} \frac{d y}{l_{y}} \frac{d z}{l_{z}}
$$

Switching to spherical coordinates yields:

$$
\begin{gathered}
\frac{d x}{l_{p}} \frac{d y}{l_{p}} \frac{d z}{l_{p}}=\frac{1}{l_{p}^{3}} r^{2} d r \sin \Theta d \Theta d \varphi=\frac{r^{2}}{l_{p}^{2}} \frac{d r}{l_{p}} d \Omega \\
S=-\iiint(\overrightarrow{\mathrm{l}} \phi(\mathrm{r})) \ln (\overrightarrow{\mathrm{l}} \vec{\nabla} \phi(\mathrm{r})) r^{2} \frac{d r}{l_{p}} \frac{d \Omega}{l_{p}^{2}}
\end{gathered}
$$

Assuming isotropy (i.e. no dependence on angular coordinates) allows for integration over the solid angle $\mathrm{d} \Omega$:

$$
S=-\frac{4 \pi}{l_{p}^{2}} \int_{0}^{\infty}\left(\overrightarrow{\mathrm{l}} \vec{\nabla} \phi\left(\mathrm{r}-\mathrm{r}_{0}\right)\right) \ln \left(\overrightarrow{\mathrm{l}} \vec{\nabla} \phi\left(\mathrm{r}-\mathrm{r}_{0}\right)\right) r^{2} \frac{d r}{l_{p}}
$$

Intermediate summary: the „Ip2" term

The integral

$$
S=-\frac{4 \pi}{l_{p}^{2}} \int_{0}^{\infty}\left(\overrightarrow{\mathrm{l}} \vec{\nabla} \phi\left(\mathrm{r}-\mathrm{r}_{0}\right)\right) \ln \left(\overrightarrow{\mathrm{l}} \vec{\nabla} \phi\left(\mathrm{r}-\mathrm{r}_{0}\right)\right) r^{2} \frac{d r}{l_{p}}
$$

will only deliver contributions at the interface $r=r_{0}$ as only at interfaces there is a finite gradient. The integrand can thus be considered being proportional to the δ function:

$$
\begin{gathered}
\frac{1}{l_{p}}\left(\overrightarrow{\mathrm{l}} \vec{\nabla} \Phi\left(\mathrm{r}-\mathrm{r}_{0}\right)\right) \ln \left(\overrightarrow{\mathrm{l}} \vec{\nabla} \Phi\left(\mathrm{r}-\mathrm{r}_{0}\right)\right)=\text { constant } * \delta\left(\mathrm{r}-\mathrm{r}_{0}\right) \\
S=-\frac{4 \pi}{l_{p}^{2}} \int_{0}^{\infty} \text { constant } * \delta\left(\mathrm{r}-\mathrm{r}_{0}\right) r^{2} d r=- \text { constant } * \frac{4 \pi r_{0}^{2}}{l_{p}^{2}}=- \text { constant } * \frac{A}{l_{p}^{2}}
\end{gathered}
$$

The entropy of a geometric sphere S_{GS} thus gets closer to the formulation known for the Bekenstein-Hawking entropy $\mathrm{S}_{\text {BH }}$ of a black hole:

$$
S_{G S}=- \text { constant } * \frac{A}{l_{p}^{2}}=\frac{A}{4 l_{p}^{2}}
$$

Can we learn more about the shape of the transition?
Can we learn more from exploiting the term:
? $\quad \frac{1}{l_{p}}\left(\overrightarrow{I \nabla} \Phi\left(\mathrm{r}-\mathrm{r}_{0}\right)\right) \ln \left(\overrightarrow{\mathrm{I} \nabla \Phi}\left(\mathrm{r}-\mathrm{r}_{0}\right)\right)$
Is there a way to explain the factor $1 / 4$?
Statistics of „contrast" might help with „contrast" being defined as....

$$
\text { contrast }:=\vec{I} \vec{\nabla} \Phi
$$

From average gradients to distribution of gradients (resp. contrast)

Possible shapes of the Φ function in the transition region:

A constant average gradient (blue) leads to an extremely narrow distribution of contrast being centered around I_{p} / η

The green shapes lead to high counts for small contrast

The red shape leads to a broader distribution of small and high contrast values

An entropy type distribution of contrast $x_{i}(i=10)$:

$$
H(x)=-10^{*} x^{*} \ln (x)
$$

is indicated as the red-line overlay

Averaging the distribution of contrast

The average of the contrast distribution can be calculated as follows

$$
\left\langle l_{p} \nabla \Phi\right\rangle=\frac{\int_{l_{p} \nabla \Phi_{\min }}^{l_{p} \nabla \Phi_{\max }}\left(l_{p} \nabla \Phi\right) \ln \left(\mathrm{l}_{p} \nabla \Phi\right) d\left(l_{p} \nabla \Phi\right)}{\int_{l_{p} \nabla \Phi_{\min }}^{l_{p} \nabla \Phi_{\max }} d\left(l_{p} \nabla \Phi\right)}
$$

The minimum contrast in the distribution has the value 0 while the maximum contrast is 1 with the maximum gradient then being $1 / /_{\mathrm{p}}$. This allows to fix the boundaries of the integral to 0 resp. 1. For these boundaries the integral in the denominator yields a value of 1 . The remaining integral

$$
\left\langle l_{p} \nabla \Phi\right\rangle=\int_{0}^{1}\left(l_{p} \nabla \Phi\right) \ln \left(l_{p} \nabla \Phi\right) d\left(l_{p} \nabla \Phi\right)
$$

according to a standard formula* interestingly yields

$$
\int_{0}^{1} x \ln (x) d x=1\left[\frac{\ln 1}{2}-\frac{1}{4}\right]-0\left[\frac{\ln 0}{2}-\frac{1}{4}\right]=-\frac{1}{4}
$$

Replacing the contrast distribution in the integral

$$
S=-\frac{4 \pi}{l_{p}^{2}} \int_{0}^{\infty}\left(\overrightarrow{\mathrm{l}} \vec{\nabla} \phi\left(\mathrm{r}-\mathrm{r}_{0}\right)\right) \ln \left(\overrightarrow{\mathrm{l}} \vec{\nabla} \phi\left(\mathrm{r}-\mathrm{r}_{0}\right)\right) r^{2} \frac{d r}{l_{p}}
$$

by its average

$$
\left\langle l_{p} \nabla \Phi\right\rangle=-\frac{1}{4} \operatorname{resp} . \quad\langle\nabla \Phi\rangle=-\frac{1}{4 l_{p}}=-\frac{1}{4} \frac{1}{l_{p}}=-\frac{1}{4} \nabla \Phi_{\max }
$$

leads to

$$
S=\frac{4 \pi}{l_{p}^{2}} \int_{0}^{\infty} \frac{1}{4} r^{2}\left|\overrightarrow{\nabla_{\max }} \phi\left(\mathrm{r}-\mathrm{r}_{0}\right)\right| d r
$$

and thus eventually to

$$
S \sim \frac{4 \pi}{l_{p}^{2}} \int_{0}^{\infty} \frac{1}{4} r^{2} \delta\left(\mathrm{r}-\mathrm{r}_{0}\right) d r=\frac{4 \pi r_{0}^{2}}{4 l_{p}^{2}}=\frac{A}{4 l_{p}^{2}}
$$

Summary

The structure of the Bekenstein- Hawking formula for the dimensionless entropy of a black hole has been derived for a geometric sphere

The derivation is based only on geometric considerations
Key ingredient to the approach is a statistical description of the transition region in a Heaviside resp. phase-field function.

Based on the Temkin entropy of a diffuse interface gradients are introduced in form of scalar products into the formulation of entropy for this purpose.

This introduces a length scale into entropy and provides a link between the world of entropy type models and the world of Laplacian type models (see following slides)

Most interesting physics and new insights - e.g. on entropic gravity - may emerge when applying and exploiting the „contrast- concept" in more depth (see final slide).
"Contrast" may also be considered as the contrast between two quantummechanical states

Entropy type equations

$$
S=k_{\mathrm{B}} \ln W \quad \text { Boltzmann entropy }
$$

$$
S=-k_{\mathrm{B}} \sum p_{i} \ln p_{i} \quad \text { Gibbs-Boltzmann entropy }
$$

$$
\mathrm{H}=-p \cdot \log _{2} p-(1-p) \cdot \log _{2}(1-p)
$$

$$
H(X)=-\sum_{i=1}^{n} p\left(x_{i}\right) \log p\left(x_{i}\right) . \begin{aligned}
& \text { Shannon entropy (binary) } \\
& \text { Shannon entropy } \\
& \text { (general) }
\end{aligned}
$$

$$
S=-k_{\mathrm{B}} \operatorname{Tr}(\hat{\rho} \log (\hat{\rho})), \quad \text { von Neumann entropy }
$$

$$
H_{\alpha}(X)=\frac{1}{1-\alpha} \log \left(\sum_{i=1}^{n} p_{i}^{\alpha}\right) \text { Rényi entropy }
$$

Incomplete list of models for a statistical/entropic description
of entities in physics and in information theory

Most of these models have a logarithmic term as a common ingredient.

None of these expression comprises gradients and/or Laplacian operators

$$
S_{q}\left(p_{i}\right)=\frac{k}{q-1}\left(1-\sum_{i} p_{i}^{q}\right) \quad \text { Tsallis entropy }
$$

Laplacian type equations

$$
\begin{aligned}
& -\Delta u=f \quad \text { Poisson Equation } \\
& \Delta \Phi(\mathbf{r})=-\frac{\rho(\mathbf{r})}{\varepsilon} \quad \text { Coulomb Equation } \\
& \Delta \Phi(\mathbf{r})=4 \pi \cdot G \cdot \rho(\mathbf{r}) \quad \text { Newton Equation } \\
& i \hbar \frac{\partial}{\partial t} \Psi(\mathbf{r}, t)=\left[\frac{-\hbar^{2}}{2 \mu} \nabla^{2}+V(\mathbf{r}, t)\right] \Psi(\mathbf{r}, t) \\
& \begin{array}{l}
\frac{\partial \phi(\mathbf{r}, t)}{\partial t}=D \nabla^{2} \phi(\mathbf{r}, t) \quad \text { Diffusion Equation } \\
\square=\frac{\partial^{2}}{c^{2} \partial t^{2}}-\Delta \text { Wave Equation (operator) } \\
\alpha \varepsilon^{2} \partial_{t} \phi=\varepsilon^{2} \nabla^{2} \phi-f^{\prime}(\phi)-\frac{e_{0}}{h_{0}} h^{\prime}(\phi) u+\tilde{\eta}(\mathbf{r}, t) \\
\frac{\partial c}{\partial t}=D \nabla^{2}\left(c^{3}-c-\gamma \nabla^{2} c\right) \quad \text { Cahnase-field Equation } \\
\hline
\end{array} \\
& \hline
\end{aligned}
$$

Incomplete list of models for a spatio-temporal description of stationary solutions or for the evolution in physics systems

Many of these models have a Laplacian operator as a common ingredient.

Combining statistical and spatially resolved models

Bridging the gap between statistics/entropy type models and spatio-temporal models of the Laplacian world

Benefits

First application of this concept:

A Combined Entropy/Phase-Field Approach to Gravity

```
Georg J. Schmitz ■ (%
MICRESS group, ACCESS e.V., Intzestr.5, D-52072 Aachen, Germany
```

Academic Editor: Remo Garattini
Received: 9 March 2017 / Revised: 28 March 2017 / Accepted: 29 March 2017 / Published: 31 March 2017
(This article belongs to the Section Astrophysics and Cosmology)
․․ View Full-Text | Download PDF [1538 KB, uploaded 24 April 2017] | Browse Figures
resulted in :

- Poisson equation/Newtons law
- terms related to curvature of space,
- terms possibly explaining modified Newtonian dynamics

