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Abstract: The holographic principle sets an upper bound on the total (Boltzmann) entropy content
of the Universe at around 10123kB (kB being Boltzmann’s constant). In this work we point out the
existence of a remarkable duality between nonrelativistic quantum mechanics on the one hand, and
Newtonian cosmology on the other. Specifically, nonrelativistic quantum mechanics has a quantum
probability fluid that exactly mimics the behaviour of the cosmological fluid, the latter considered
in the Newtonian approximation. One proves that the equations governing the cosmological
fluid (the Euler equation and the continuity equation) become the very equations that govern
the quantum probability fluid after applying the Madelung transformation to the Schroedinger
wavefunction. Under the assumption that gravitational equipotential surfaces can be identified
with isoentropic surfaces, this model allows for a simple computation of the gravitational entropy
of a Newtonian Universe.
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1. Introduction

There is a widespread certainty that the continuum description of spacetime as provided by
general relativity must necessarily break down at very short length scales and/or very high curvatures.
A number of very different approaches to an eventual theory of quantum gravity have been presented
in the literature; these candidate theories are too varied and too extensive to summarise here. On
the whole, the picture that emerges is that of a continuum description after some appropriate coarse
graining of some underlying degrees of freedom. Even if the precise nature of the latter is unknown
yet, one can still make progress following a thermodynamical approach: one ignores large amounts
of detailed knowledge (say, the precise motions followed by the atoms of a gas) while concentrating
only on a few coarse-grained averages (say, the overall pressure exerted by the atoms of a gas on the
container walls). This way of approaching the problem has come to be called the emergent approach.

In the emergent approach to spacetime, gravity qualifies as an entropic force. This means that we
do not know the fundamental degrees of freedom underlying gravity, but their overall macroscopic
effect is that of driving the system under consideration in the direction of increasing entropy. If
gravitational forces are entropy gradients, then gravitational equipotential surfaces can be identified
with isoentropic surfaces. We will consider a density of particles representing the (baryonic and dark)
matter contents of a hypothetical Newtonian Universe. This volume density will be identified with
the squared modulus of a nonrelativistic wavefunction ψ satisfying the Schroedinger equation. Let U
denote the gravitational potential. Once dimensions are corrected (using h̄ and kB), the expectation
value 〈ψ|U|ψ〉 becomes a measure of the gravitational entropy of the Universe when the matter is
described by the wavefunction ψ.
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2. Methods

In Newtonian cosmology, the Universe is regarded as being subject to a gravitational potential U
satisfying the Poisson equation

∇2U = 4πGρ. (1)

The matter content (baryonic and dark matter) is modelled as an ideal fluid satisfying the
continuity equation and the Euler equation,

∂ρ

∂t
+∇ · (ρv) = 0,

∂v
∂t

+ (v · ∇) v +
1
ρ
∇p− F = 0. (2)

The cosmological principle requires that the velocity field v be everywhere proportional to the
position vector r. This requirement is equivalent to Hubble’s law [5,6,8], which can be described
phenomenologically by the harmonic potential

UHubble(r) = −
H2

0
2

r2. (3)

Hubble’s constant H0 is an angular frequency; the negative sign implies that this potential is
repulsive. Accordingly, UHubble satisfies the Poisson Equation (1) with a negative mass density.

Schroedinger quantum mechanics can also be understood in terms of an ideal fluid, the quantum
probability fluid. Following Madelung one factorises the nonrelativistic wavefunction ψ into amplitude
and phase:

ψ = exp
(
S

2kB
+ i
I
h̄

)
. (4)

The amplitude exp(S/2kB) is a real exponential; one can invoke Boltzmann’s principle to regard
S as a Boltzmann entropy of the matter described by ψ—not to be confused with the gravitational
entropy Sg in Equation (16) below. It will also be convenient to define a dimensionless Boltzmann
entropy S := S/2kB. The phase exp(iI/h̄) is the complex exponential of the classical–mechanical
action integral I . Substituting the Ansatz Equation (4) into the Schroedinger equation for ψ, one arrives
at a set of two equations. One of them is the continuity equation for the quantum probability fluid,

∂S
∂t

+
1
m
∇S · ∇I + 1

2m
∇2I = 0, (5)

where
v :=

1
m
∇I , ρ = e2S. (6)

The second equation obtained is known as the quantum Hamilton-Jacobi equation:

∂I
∂t

+
1

2m
(∇I)2 + V +Q = 0, (7)

where V is the external potential present in the Schroedinger equation (we recall that the dimensions
of U in Equations (1) and (3) are velocity squared, whereas those of V in Equation (7) are mass times
velocity squared). Above,

Q := − h̄2

2m

[
(∇S)2 +∇2S

]
(8)

is known as the quantum potential.
Finally we need to derive an Euler equation for the quantum probability. This is achieved by

taking the gradient of Equation (7):

∂v
∂t

+ (v · ∇) v +
1
m
∇Q+

1
m
∇V = 0. (9)
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Comparison between Equations (9) and (2) produces a bijective correspondence between the quantum
probability fluid and the cosmological fluid. Which suggests that, given the cosmological fluid in the
Newtonian approximation, we use nonrelativistic quantum mechanics as an equivalent description thereof . In
this description by means of a quantum wavefunction ψ, the amount of mass mV contained within
a volume V equals mV = m

∫
V d3x|ψ|2; the whole observable Universe is regarded as a sphere of

radius R0. Considering the Universe as a sphere with finite radius has the added bonus that the
instabilities [1] due to the negative sign of the potential Equation (3) are avoided naturally.

In view of Hubble’s law Equation (3) it is reasonable to consider the effective Hamiltonian

Heff = −
h̄2

2m
∇2 − keff

2
r2, keff = mH2

0 (10)

as governing the overall expansion of the Universe, at least within the Newtonian limit. As a first
approximation it will also be useful to consider the free Hamiltonian

Hfree = − h̄2

2m
∇2. (11)

Their respective eigenfunctions are readily obtained in spherical coordinates. For Equation (11)
we have the free spherical waves

ψκ00(r, θ, ϕ) =
1√

4πR0

1
r

exp (iκr) , κ ∈ R, (12)

normalised within a sphere of radius R0, and carrying zero angular momentum as required by the
cosmological principle. For the Hubble Hamiltonian Equation (10) one finds the exact eigenfunctions [4]

ψ
(1)
α (r, θ, ϕ) =

N(1)
α√
4π

exp
(

iβ2r2

2

)
1F1

(
3
4
− iα

4
,

3
2

;−iβ2r2
)

(13)

and

ψ
(2)
α (r, θ, ϕ) =

N(2)
α√
4π

1
r

exp
(

iβ2r2

2

)
1F1

(
1
4
− iα

4
,

1
2

;−iβ2r2
)

. (14)

They also carry vanishing angular momentum, N(1)
α and N(2)

α being radial normalisation factors.
Above, 1F1 is the confluent hypergeometric function, and the parameters α, β are given by

α :=
2E

h̄H0
, β4 :=

m2H2
0

h̄2 , (15)

with E the energy eigenvalue in Heffψ = Eψ.

3. Results and Discussion

Our previous reasoning leads naturally to the operator R2 = X2 + Y2 + Z2 as a measure of
the amount of gravitational entropy contained within a Newtonian Universe in which the Hubble
repulsion arises as the net force. Specifically, the operator

Sg := N kBmH0

h̄
R2 (16)

is dimensionally an entropy; a dimensionless factor N is of course left undetermined.We call Sg the
gravitational entropy operator.
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We can now compute the expectation value of the entropy Sg in the free eigenstates Equation (12)
and in the Hubble eigenstates Equations (13) and (14). For the free waves Equation (12) one finds

〈ψκ00|R2|ψκ00〉 =
R2

0
3

. (17)

Substituting the known values [7] of the cosmological data m, H0, R0 into Equations (16) and (17)
we arrive at the estimate [2]

〈ψκ00|Sg|ψκ00〉 = 10123kB. (18)

Above we have set N = 3/2.6. Our result Equation (18) saturates the upper bound set by the
holographic principle. A finer estimate is obtained using the Hubble waves Equations (13) and (14).
After some numerical approximations one finds

〈ψ(1)
α |R2|ψ(1)

α 〉 =
R2

0
2 ln (βR0)

= 〈ψ(2)
α |R2|ψ(2)

α 〉. (19)

This leads to [4]
〈ψ(1)

α |Sg|ψ(1)
α 〉 = 10120kB = 〈ψ(2)

α |Sg|ψ(2)
α 〉 (20)

upon taking N = 1/6. This new theoretical estimate lies three orders of magnitude below the
holographic bound, thus representing a considerable improvement on the estimate obtained from the
free waves.

4. Conclusions

The holographic principle sets an upper bound of approximately 10123kB on the entropy content
of the Universe. Some phenomenological estimates [3] place the actual value at around 10104kB,
gravitational entropy (and, in particular, black holes) representing the largest single contributors to
the entropy budget of the Universe. Although Newtonian cosmology does allow for black holes, the
many simplifications made by our elementary model necessarily leave out some essential physics of
the Universe. Nevertheless, our toy model succeeds in capturing some key elements of reality. For
example, the upper bound set by the holographic principle is always respected, even by such a crude
approximation as the free waves Equation (12). The Hubble waves Equations (13) and (14) represent a
considerable improvement on the free waves, as they reduce the expectation value of the entropy by
three orders of magnitude.
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