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Abstract: Shape Analysis studies geometrical objects, as for example a flat fish in the plane or
a human head in the space. The applications range from structural biology, computer vision,
medical imaging to archaeology We focus on the selection of an appropriate measurement of distance
among observations with the aim of obtaining an unsupervised classification of shapes. Data from
a shape are often realized as a set of representative points, called landmarks. For planar shapes,
we assume that each landmark is modeled via a bivariate Gaussian, where the means capture
uncertainties that arise in landmarks placement and the variances the natural variability across
the population of shapes. At first we consider the Fisher-Rao metric as a Riemannian metric on
the Statistical Manifold of the Gaussian distributions. The induced geodesic-distance is related
with the minimization of information in the Fisher sense and we can use it to discriminate shapes.
Another suitable distance is the Wasserstein distance, which is induced by a Riemannian metric and
is related with the minimal transportation cost. In this work, a simulation study is conducted in order
to make a comparison between Wasserstein and Fisher-Rao metrics when used in shapes clustering.
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1. Introduction

Shapes clustering is of interest in various fields such as geometric morphometrics, computer
vision and medical imaging. In the clustering of shapes is crucial to find an appropriate measurement
of distance among observations. In particular we are interested to classify shapes which derive
from complex systems as expression of self-organization phenomenon. We consider objects whose
shapes are based on landmarks ([1–3]). These objects can be obtained by medical imaging procedures,
curves defined by manually or automatically assigned feature points or by a discrete sampling of the
object contours.

Since the shape space is invariant under similarity transformations, that is translations,
rotations and scaling, an Euclidean distance function on such a space is not really meaningful.
In Shape Analysis [4], in order to apply standard clustering algorithms to planar shapes, the Euclidean
metric has to be replaced by the metric of the shape space. Examples are provided in [5,6] where
the Procrustes distance was integrated in standard clustering algorithms such as the k-means.
Similarly, [7] applied standard hierarchical or k-means clustering using dissimilarity measures based
on the inter-landmark distances. In a model-based clustering framework [8,9] developed a mixture
model of offset-normal shape distributions.
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Considering for simplicity a planar shape of a population, we assume that each landmark is
modeled via a bivariate Gaussian, where the means are the landmark geometric coordinates and
capture uncertainties that arise in landmark placement while the variances derived from the natural
variability across the population of shapes. According to Information Geometry, we consider the
space of bivariate Gaussian densities as a Statistical Manifold ([10,11]) with the local coordinates
defined by the model parameters. Next, we define distances between objects related with different
Riemannian metrics. These distances are induced by the geodesics of the two metrics (geodesic
distances). Applications of geodesics to shape clustering techniques are provided, in a landmark-free
context, by [12,13].

At first we consider the Fisher-Rao metric as a Riemannian metric on the Statistical Manifold of
the Gaussian densities. The induced geodesic-distance is related with the minimization of information
in the Fisher sense and we can use it to define a shape distance.

Another suitable distance is the Wasserstein distance, which is induced by a Riemannian metric
and is related with the minimal transportation cost.

The geodesic distances induced by Wasserstein and Fisher-Rao metrics can be used to discriminate
shapes. The discriminative power of these shapes distances will be evaluated, in the setting of shapes
clustering on simulated data.

2. The Method

Suppose we are given a planar shape configuration, C, consisting of a fixed number K of
labeled landmarks

C = {µ1, µ2, . . . , µK}

with generic element µk = {µk1, µk2, } for k = 1, . . . , K.
Following [14], the k-th landmark may be represented by a bivariate Gaussian density as follows:

f (x; µk, Σk) = (2π)−1|Σk|−
1
2 exp

{
−1

2
(x− µk)

′Σ−1
k (x− µk)

}
(1)

with x being a generic 2-dimensional vector and Σk given by

Σk = σ2
k I2 = diag(σ2

k1, σ2
k2) (2)

where {σ2
k1,σ2

k2} is the vector of the variances in the horizontal and vertical directions of the k-th
landmark coordinates, for k = 1, . . . , K. We remark that the means capture uncertainties that arise in
landmark placement and the variances the natural variability across a population of shapes.

From Equation (1) we can assign to the k-th landmark a new set of coordinates given by
θk = (µk, σk) on the 4-dimensional manifold which is the product of two upper half planes. So two
planar shapes S and S′ can be parametrized as follows: S = (θ1, . . . , θK) and S′ = (θ′1, . . . , θ′K).
For every k, let γk(t) with t ∈ [0, 1] be a path of the manifold such that γk(0) = θk and γk(1) = θ′k.
From differential geometry we know that a given Riemannian metric g induces an inner product
< ., . >g on the tangent space of the manifold such that the length of γk(t) is defined as follows

l(γk) =
∫ 1

0
‖γ̇k(t)‖2

gdt (3)

The distance between the k-th landmarks of the two shapes is given by the minimum length of
the trajectories γk(t) (geodesic distance)

dg(θk, θ′k) = inf
γk
{
√

l(γk) : γk(0) = θk, γk(1) = θ′k}. (4)
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Finally, the sum of the distances between each pair of landmarks is used to define a distance between
two shapes S and S′ [15].

In the statistical manifold of bivariate Gaussian densities, we will consider two different
Riemannian metrics which in turn induce two types of geodesic distances.

One is the Fisher-Rao metric g f . For this metric, the closed form of the geodesic distance between
two densities with diagonal covariance matrices is available and given by [16]:

dg f ((µ11, σ11, µ12, σ12), (µ21, σ21, µ22, σ22)) =√
2 ∑2

i=1

(
ln
|( µ1i√

2
,σ1i)−(

µ2i√
2

,−σ2i)|+|(
µ1i√

2
,σ1i)−(

µ2i√
2

,σ2i)|

|( µ1i√
2

,σ1i)−(
µ2i√

2
,−σ2i)|−|(

µ1i√
2

,σ1i)−(
µ2i√

2
,σ2i)|

)2

.
(5)

For Gaussian densities with Σ being any symmetric positive definite covariance matrix, a closed
form for the associated distance is not available.

The other Riemannian metric we consider is gw, which induces the Wasserstein distance ([17]).
For Gaussian densities the explicit expression of the Wasserstein distance is the following:

dgw(θ, θ′) = ‖µ− µ′‖+ tr(Σ) + tr(Σ′)− 2tr(
√

Σ
1
2 Σ′Σ

1
2 ) (6)

where ‖.‖ is the euclidean norm and Σ
1
2 is defined for a symmetric positive definite matrix Σ so that

Σ
1
2 · Σ 1

2 = Σ.
[18] proved that, with respect to the Riemannian metric which induces the Wasserstein distance,

the manifold of Gaussian densities has non-negative sectional curvature. We deduce that the
Wasserstein metric is different from the Fisher-Rao metric. For example in the univariate case, it is well
known that the statistical manifold of Gaussian densities with the Fisher-Rao metric can be regarded
as the upper half plane with the hyperbolic metric, which has negative curvature.

3. A Simulation Experiment

In this section we report the results of a simple simulation experiment. In order to test the
discriminative power of the proposed shape distances we first simulate shapes from two different
mean shapes. The Fisher-Rao distance and the Wasserstein distance are evaluated between each pair
of shapes and stored in two different pairwise distance matrices. Then we run a hierarchical cluster
algorithm which takes as input the pairwise distance matrices computed with the two shapes distances.
The quality of the clusters identified with the two shapes distances is measured by means of the
Adjusted Rand index ([19]).

The shapes are simulated from the following Gaussian perturbation model

Xih = (µh + Ei)Γi + 1KγT
i (7)

where

• Ei are zero mean K× 2 random error matrices simulated from the multivariate Normal distribution
with covariance structure ΣE

• µh is the mean shape for cluster h
• Γi is an orthogonal rotation matrix with an angle θ uniformly produced in the range [0, 2π]

• γT
i is a 1× 2 uniform translation vector in the range [−2, 2]

Two different covariance structures are considered:

• Isotropic with ΣE = σIK ⊗ σI2 with independent spherical variation around each mean landmark
• Heteroscedastic with ΣE = diag[σ1, σ2 . . . , σK]⊗ σI2 with a heteroscedastic variation around each

mean landmark

The 4th International Electronic Conference on Entropy and Its Applications (ECEA 2017), 21 November–1st December 2017;
Sciforum Electronic Conference Series, Vol. 4, 2017



4 of 5

The number of clusters was set to h = 2 and the number of configurations to 30. The mean shapes
in the two clusters were taken from the mean skull of 21 rats collected at ages of 7 and 14 days (the rat
calvarial data set, [1]). In the isotropic case, two values of σ were used: σ = 10 (small error) and σ = 13
(high error). The heteroscedastic case was simulated by multiplying the value of σ = 10 of 3 landmarks
(out of K = 8 landmarks) by a factor of 1.69 (small error) and 3 (high error). Results from 500 random
simulations are reported in Table 1.

Table 1. Adjusted-Rand index.

Model Fisher-Rao Wasserstein

Isotropic-small error 0.8848 0.9553
Isotropic-high error 0.6265 0.7457

Heteroscedastic-small error 0.8854 0.9606
Heteroscedastic-high error 0.8367 0.6616

Results show that the Wasserstein distance has a good performance especially in the Isotropic
case. As the variability around the landmarks becomes heteroscedastic then the Fisher-Rao distance
performs better (Heteroscedastic-high error case).

A more thorough study, however, is needed to analyze advantages and limits of these metrics as
a tool for evaluating the differences between shapes. This is the aim of our future work.
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