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Abstract: Modified entropies have been extensively considered in the literature [1]. Among the
most well known are the Rényi entropy [2] and the Havdra-Charv�’a [3] and Tsallis entropy [4,5].
All these depend on one or several parameters. By means of a modification to Superstatistics [6],
one of the authors [7] has proposed generalized entropies that depend only on the probability [7,8].
There are three entropies: SI = k ∑Ω

l=1(1− ppl
l ), SI I = kΣΩ

l=1(p−pl
l − 1) and their linear combination

SI I I = kΣΩ
l=1

p
−pl
l −p

pl
l

2 . It is interesting to notice that the expansion in series of these entropies having
as a first term S = −kΣΩ

l=1 pl ln pl in the parameter xl ≡ pl ln pl ≤ 1 cover, up to the first terms,
any other expansion of any other possible function in xl , one would want to propose as another
entropy. The three proposed entropies in [7,8] are then the only possible generalizations of the
Boltzmann-Gibbs (BG) or Shannon entropies that depend only of the probability. One obtains a
superposition of two statistics (that of β and that of pl), hence the name superstatistics. One may
define an averaged Boltzmann factor as B(E) =

∫ ∞
0 f (β)eβEdβ where f (β) is the distribution of β.

This work will deal with the analysis of the first two generalized entropies and will propose and
deduce their associated quantum statistics; namely Bose-Einstein and Fermi-Dirac. The results will be
compared with the standard ones and those due to the entropies in [3,4]. It will be seen in both cases
that the BEO (the Bose-Einstein statistics corresponding to the entropies proposed by Obregón [7])
statistic differs slightly from the usual BE statistic and in the same way for FDO the difference is small
from the usual FD.
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1. Introduction

In quantum statistics, Bose-Einstein statistics (BE statistics) is one of two possible ways in which a
collection of non-interacting indistinguishable particles may occupy a set of available discrete energy
states, at thermodynamic equilibrium. The theory was developed (1924–25) by Satyendra Nath Bose,
the idea was later adopted and extended by Albert Einstein in collaboration with Bose.

The Bose-Einstein (BE) statistics apply only to those particles not limited to single occupancy of
the same state that is, particles that do not obey the Pauli exclusion principle restrictions. Such particles
have integer values of spin and are named bosons, after the statistics that correctly describe their
behavior. There must also be no significant interaction between the particles.

On the other hand, in quantum statistics, a branch of physics, Fermi-Dirac statistics describe a
distribution of particles over energy states in systems consisting of many identical particles that obey
the Pauli exclusion principle. It is named after Enrico Fermi and Paul Dirac, each of whom discovered
the method independently.

Fermi-Dirac (FD) statistics apply to identical particles with half-integer spin in a system with
thermodynamic equilibrium. Additionally, the particles in this system are assumed to have negligible
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mutual interaction, that allows the many-particle system to be described in terms of single-particle
energy states. The result is the FD distribution of particles over these states which includes the condition
that no two particles can occupy the same state; this has a considerable effect on the properties of the
system. Since FD statistics apply to particles with half-integer spin, these particles are therefore called
fermions. It is most commonly applied to electrons, which are fermions with spin 1/2. Fermi-Dirac
statistics are a part of the more general field of statistical mechanics and use the principles of quantum
mechanics. The Bose-Einstein (BE), Fermi-Dirac (FD) and Classical (Boltzmann) distributions are given
by nBE = 1

e(Ej−µ)/kT−1
, nFD = 1

e(Ej−µ)/kT
+1

and nCl = e−(Ej−µ)/kT respectively, see Figure 1.

Figure 1. Comparison of Classic, BE and FD distributions.

The nonextensive entropy studied and developed by Tsallis [4], was previously defined by
Havrda-Charvát [3]. Tsallis himself concedes that “Tsallis entropy” is a new rediscovery (not a
discovery) in the labyrinthic history of entropies [5]. In recent years the nonextensive statistical
mechanics, based on Tsallis entropy and the corresponding deformed exponential function, has been
developed and attracted a lot of attention with a large amount of applications in rather diversified
fields. Tsallis non-extensive statistical mechanics is a generalization of the Boltzmann-Gibbs (BG)
statistical mechanics, this depends on a parameter q. In Section 2 we will review Tsallis entropy,
analyzing the dependence of the parameter q on the mentioned entropy. Furthermore, as far as the
nonextensive quantum statistical mechanics is concerned, in some places, the generalization to the BE
distribution for bosons and FD for fermions have been investigated.

In [7,8] it is proposed a nonextensive statistical mechanics entropy that depends only on the
probability distribution and not on a parameter in the framework of superstatistics; it is based on
a Γ or χ2 distribution that depends on β and also on pl . The probabilities were calculated from the
Boltzmann factor and show that it is possible to obtain the generalized entropy SI = k ∑Ω

l=1 s(pl),
where s(pl) = 1− ppl ; by maximizing this information measure, pl ≡ gI(βEl) for SI and pl ≡ gI I(βEl)

for SI I are calculated as an implicit functions of βEl and, at this stage of the procedure, pl can be
identified with the probability distribution, which we will review in Section 3.

It is interesting to study the extent of these two statistics with generalized entropies, in particular
Havdra-Charvát (Tsallis). A direct generalization is the proposal n(x) = 1

ex
2−q±1 [10]. We will assume

a similar “corresponding” expression n = 1
g−1(βEl)±1 . In Section 4 we will study this proposal of the

generalization of the BE and FD statistics based on the two entropies SI and SI I .
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Given that gI,I I (βEl) are only implicitly known, we will invert βEl(gI,I I ) and, generalize for the
number of occupation nI,I I , taking the values of this function. We will calculate the generalized statistics
corresponding to BE and FD namely nI,I I =

1
g−1

I,I I(βEl)±1
. A brief summary is then presented in Section 5.

2. Results

2.1. Reviewing the q-Deformed Bose-Einstein (BE) and Fermi-Dirac (FD)

Tsallis nonextensive statistical mechanics is a generalization of the common Boltzmann-Gibbs
(BG) statistical mechanics by postulating a generalized entropy of the classical one, S = −k ∑Ω

l=1 pl ln pl
to Sq = −k ∑Ω

l=1 pq
l lnq pl , where k denotes Boltzmann constant. For simplicity we take k = 1, so the

q-logarithm is lnq x = x1−q−1
1−q and its corresponding q-exponential function ex

q = (1 + (1− q)x)1/(1−q),
where Ω gives the total number of the microscopic configuration in the system, and q ∈ R is the
so-called nonextensive parameter. One can check that one recovers the BG statistics when q→ 1.

Furthermore, as far as the nonextensive quantum statistical mechanics is concerned,
the generalized Bose Einstein distribution for bosons and Fermi Dirac distribution for fermions
have been already studied, and it has been shown that a possible distribution function in nonextensive
quantum statistics can be written as n̄l = 1/(eα+βEl

2−q ± 1), see [10]. In Figures 2 and 3 we show for
different values of q the Tsallis Bose-Einstein and Fermi-Dirac distributions respectively.

Figure 2. Comparison of Tsallis distributions (BE-Tsallis) for different values of q.

Figure 3. Comparison of Tsallis distributions (FD-Tsallis) for different values of q.
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2.2. The Entropies Depending Only on the Probability Distribution

As already mentioned in [7,8] nonextensive statistical mechanics entropies have been proposed,
that depend only on the probability distribution, and not on a parameter, in the framework of
superstatistics. It is based on a Γ or (χ2) distribution that depends on β and also on pl . Then the
Boltzmann factor is calculated and it is shown that it is possible to obtain the generalized entropies

SI = k ∑Ω
l=1 sI (pl), where sI (pl) = 1 − p

pl
l and SI I = k ∑Ω

l=1 sI I(pl), where sI I (pl) = p
−pl
l − 1.

By maximizing the corresponding information measure, pl is implicitly expressed as function of
βEl and, at this stage of the procedure, pl can be identified with the probability distribution.

In [8] it was shown that from the functional

Φ =
S
k
− γ

Ω

∑
l=1

pl − β
Ω

∑
l=1

p
pl+1
l El ,

maximizing Φ, pl is obtained for SI as

1 + ln pl + βEl(1 + pl + pl ln pl) = p−pl
l . (1)

And in a similar way for SI I as

1 + ln pl + βEl(1− pl − pl ln pl) = ppl
l . (2)

The dominant term in these expressions correspond to the Boltzmann-Gibbs prediction, pl =

e−βoEl . In general, however, we cannot analytically express pl as function of βEl .
In Figure 4, pl is drawn as a function of the reduced energy βEl . We notice that for relative large

values of βEl the usual values for pl coincide with the ones given by Equations (1) and (2). As expected,
they coincide also for pl~1.

Figure 4. Comparison of the three probabilities. The blue line corresponds to the standard one
pl = e−βEl , red line to pl = gI(βEl) Equation (1), and green line pl = gI I(βEl), Equation (2).

As mentioned direct generalization of the Havdra-Charvát or Tsallis entropy is given by n(x) =
1

ex
2−q±1 [11,12]. The generalizations proposed here correspond to nI,I I =

1
g−1

I,I I
(βEl)±1 . We will discuss

them in the next section.
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3. BEO and FDO, Generalized Distribution Functions

In this section we will discuss the extension to the nonextensive statistical mechanics whose
entropies depend only on the probability [7,8]; corresponding to Bose-Einstein (BEO) and Fermi-Dirac
(FDO) distributions. These entropies are: SI = k ∑Ω

l=1(1− ppl
l ), SI I = k ∑Ω

l=1(p−pl
l − 1). As stated to

them correspond nI,I I =
1

g−1
I,I I(βEl)±1

.

We will take βEl(pl) and invert it and get the values of plI,I I ≡ gI,I I (βEl). In this manner we will
be able to calculate the occupancy number nI,I I corresponding to the two entropies and their associated
BEO and FDO.

It is shown that in both cases the BEO statistics differs from the usual BE statistics only slightly
Figures 5 and 6.

Figure 5. Comparison of BE with BEO (nI ); and classical pl = e−βEl with gI(βEl). The red line
corresponds to BEO, blue line to BE usual, green line to gI (βEl) and brown line to classical (Boltzmann).

Figure 6. Comparison of BE with BEO (nI I ), and classical pl = e−βEl with gI I (βEl). The red line
corresponds to BEO, blue line to BE usual, green line to gI I (βEl), brown line to classical (Boltzmann).
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In the same way we can see that the FDO statistics differs from the usual FD statistics in a small
amount, Figures 7 and 8.

Figure 7. Comparison of FD with FDO (nI ), and classical pl = e−βEl with gI (βEl). The red line
corresponds to FDO, blue line to FD usual, green line to gI (βEl), brown line to classical (Boltzmann).

Figure 8. Comparison of FD with FDO (nI I ), and classical pl = e−βEl with gI I (βEl). The red line
corresponds to FDO, blue line to FD usual, green line to gI I (βEl), brown line to classical (Boltzmann).

We observe that the usual BE and FD occupancy numbers are only slightly modified when
considering the generalized entropies SI and SI I . This happens also in the q-entropy [3,4] for q near
to one.
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4. Conclusions

We started by making a quick revision of the nonextensive statistical mechanics of Tsallis [4]
in which one recovers the usual statistical mechanics for q = 1 (Boltzmann). Then we reviewed
the proposed occupancy number for the BE and FD q-statistics comparing them with the usual
ones. For the nonextensive statistical mechanics which entropies depend only on the probability,
we make a proposal also based on what it should be a generalized exponential, namely the inverse
of the probability. This can only be performed numerically, if pl I,I I ≡ gI,I I (βEl) the proposal is
nI,I I =

1
g−1

I,I I
(βEl)±1 , we showed that the BEO and FDO occupancy numbers differ only slightly from the

usual ones. This happens also for the q-entropies, for q near to one.
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