

MOL2NET, International Conference Series on Multidisciplinary Sciences http://sciforum.net/conference/mol2net-03

Functional characterization of α_1 adrenergic receptor in the rat locus coeruleus in vitro

Irati Rodilla (irati.rodilla@ehu.eus)^a, Aitziber Mendiguren

(aitziber.mendiguren@ehu.eus)^a and Joseba Pineda (joseba.pineda@ehu.eus)^a

^{*a*} Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), E-48940 Leioa, Bizkaia, Spain

Abstract

 α_1 -adrenoceptor (α_1 AR) is involved in the physiopathology of the central nervous system (CNS) and could constitute a therapeutic target for neurological disorders such as drug addiction or Alzheimer's disease. α_1 AR mainly couples to $G_{q/11}$ protein, which activation leads to stimulation of phospholipase C (PLC) and subsequent activation of protein kinase C (PKC). However, other G proteins (G_i, G_s) have also been described to be coupled to $\alpha_1 AR$ receptors. The locus coeruleus (LC), the main noradrenergic nucleus in the CNS, has been shown to express $\alpha_1 AR$, but to date functional role of α_1 AR in the adult rat brain LC remains unclear. The aim of this study was to characterize, by singleunit extracellular recordings of LC neurons, the role of $\alpha_1 AR$ in the regulation of the firing rate (FR) of LC neurons in adult rat brain in vitro. For that purpose, we first characterize the effect of the α_1/α_2 AR agonist noradrenaline (NA) in the presence and absence of the α_2 AR antagonist RS 79948 (0.1 µM). Then, we investigated the signalling pathway involved in the effect of NA. Perfusion with NA (100 μ M) inhibited the FR of LC neurons through activation of α_2 AR. However, in the presence of the α_2 -adrenoceptor ($\alpha_2 AR$) antagonist RS 79948 (0.1 μ M) perfusion with NA increased the FR of NA neurons (stimulatory effect = 114%). The stimulatory effect of NA (100 μ M) was blocked by the a₁AR antagonist WB 4101 (0.5 µM). Administration of the PKC inhibitor Go 6976 (1 µM), the G protein-coupled inwardly-rectifying potassium channel (GIRK) blocker BaCl₂ (300 µM) or PKA inhibitor H-89 (10 µM) failed to change the stimulatory effect of NA. However, NA (100 µM) induced stimulation was reduced by 64% in the presence of the G_{i/o} protein inactivator pertussis toxin (PTX) (500 ng·ml⁻¹). In conclusion, α_1 AR activation stimulates the FR of NA neurons in the adult rat LC through a signalling pathway that involves activation of the G_{i/o} protein. It remains to be studied the mechanism by which $G_{i/o}$ proteins stimulates the FR of LC neurons via $\alpha_1 AR$ activation.

References

Berridge, C.W., and Waterhouse, B.D. (2003). The locus coeruleus-noradrenergic system: Modulation of behavioral state and state-dependent cognitive processes. Brain Res. Rev. *42*: 33–84.

Ghanemi, A., and Hu, X. (2015). Elements toward novel therapeutic targeting of the adrenergic system. Neuropeptides *49*: 25–35.

Ivanov, A., and Aston-Jones, G. (1995). Extranuclear dendrites of locus coeruleus neurons: activation by glutamate and modulation of activity by alpha adrenoceptors. J. Neurophysiol. *74*: 2427–2436.

Mendiguren, A., and Pineda, J. (2007). CB1 cannabinoid receptors inhibit the glutamatergic component of KCl-evoked excitation of locus coeruleus neurons in rat brain slices. Neuropharmacology 52: 617–625.

Osborne, P.B., Vidovic, M., Chieng, B., Hill, C.E., and Christie, M.J. (2002). Expression of mRNA and functional alpha1-adrenoceptors that suppress the GIRK conductance in adult rat locus coeruleus neurons. Br. J. Pharmacol. *135*: 226–232.

Pudovkina, O.L., and Westerink, B.H.C. (2005). Functional role of alpha1-adrenoceptors in the locus coeruleus: A microdialysis study. Brain Res. *1061*: 50–56.