# Functional characterization of $\alpha_{1}$ adrenergic receptor in the rat locus coeruleus in vitro 

Irati Rodilla (irati.rodilla@ehu.eus) ${ }^{\text {a }}$, Aitziber Mendiguren (aitziber.mendiguren@ehu.eus) ${ }^{\text {a }}$ and Joseba Pineda (joseba.pineda@ehu.eus) ${ }^{\text {a }}$
${ }^{a}$ Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), E-48940 Leioa, Bizkaia, Spain


#### Abstract

$\alpha_{1}$-adrenoceptor ( $\alpha_{1} \mathrm{AR}$ ) is involved in the physiopathology of the central nervous system (CNS) and could constitute a therapeutic target for neurological disorders such as drug addiction or Alzheimer's disease. $\alpha_{1}$ AR mainly couples to $\mathrm{G}_{\mathrm{q} / 11}$ protein, which activation leads to stimulation of phospholipase C (PLC) and subsequent activation of protein kinase C (PKC). However, other G proteins ( $\mathrm{G}_{\mathrm{i}}, \mathrm{G}_{\mathrm{s}}$ ) have also been described to be coupled to $\alpha_{1} \mathrm{AR}$ receptors. The locus coeruleus (LC), the main noradrenergic nucleus in the CNS, has been shown to express $\alpha_{1} A R$, but to date functional role of $\alpha_{1} \mathrm{AR}$ in the adult rat brain LC remains unclear. The aim of this study was to characterize, by singleunit extracellular recordings of LC neurons, the role of $\alpha_{1} \mathrm{AR}$ in the regulation of the firing rate (FR) of LC neurons in adult rat brain in vitro. For that purpose, we first characterize the effect of the $\alpha_{1} / \alpha_{2} \mathrm{AR}$ agonist noradrenaline (NA) in the presence and absence of the $\alpha_{2}$ AR antagonist RS 79948 $(0.1 \mu \mathrm{M})$. Then, we investigated the signalling pathway involved in the effect of NA. Perfusion with NA $(100 \mu \mathrm{M})$ inhibited the FR of LC neurons through activation of $\alpha_{2}$ AR. However, in the presence of the $\alpha_{2}$-adrenoceptor ( $\alpha_{2}$ AR) antagonist RS $79948(0.1 \mu \mathrm{M})$ perfusion with NA increased the FR of NA neurons (stimulatory effect $=114 \%$ ). The stimulatory effect of NA $(100 \mu \mathrm{M})$ was blocked by the $\alpha_{1} \mathrm{AR}$ antagonist WB $4101(0.5 \mu \mathrm{M})$. Administration of the PKC inhibitor Go $6976(1 \mu \mathrm{M})$, the G protein-coupled inwardly-rectifying potassium channel (GIRK) blocker $\mathrm{BaCl}_{2}(300 \mu \mathrm{M})$ or PKA inhibitor H-89 (10 $\mu \mathrm{M}$ ) failed to change the stimulatory effect of NA. However, NA ( $100 \mu \mathrm{M}$ ) induced stimulation was reduced by $64 \%$ in the presence of the $\mathrm{G}_{\mathrm{i} / \rho}$ protein inactivator pertussis toxin (PTX) ( $500 \mathrm{ng} \cdot \mathrm{ml}^{-1}$ ). In conclusion, $\alpha_{1} \mathrm{AR}$ activation stimulates the FR of NA neurons in the adult rat LC through a signalling pathway that involves activation of the $\mathrm{G}_{\mathrm{i} / 0}$ protein. It remains to be studied the mechanism by which $\mathrm{G}_{\mathrm{i} / \mathrm{o}}$ proteins stimulates the FR of LC neurons via $\alpha_{1}$ AR activation.


## Graphical Abstract



## References

Berridge, C.W., and Waterhouse, B.D. (2003). The locus coeruleus-noradrenergic system: Modulation of behavioral state and state-dependent cognitive processes. Brain Res. Rev. 42: 33-84.
Ghanemi, A., and Hu, X. (2015). Elements toward novel therapeutic targeting of the adrenergic system. Neuropeptides 49: 25-35.

Ivanov, A., and Aston-Jones, G. (1995). Extranuclear dendrites of locus coeruleus neurons: activation by glutamate and modulation of activity by alpha adrenoceptors. J. Neurophysiol. 74: 2427-2436.
Mendiguren, A., and Pineda, J. (2007). CB1 cannabinoid receptors inhibit the glutamatergic component of KCl -evoked excitation of locus coeruleus neurons in rat brain slices. Neuropharmacology 52: 617-625.
Osborne, P.B., Vidovic, M., Chieng, B., Hill, C.E., and Christie, M.J. (2002). Expression of mRNA and functional alpha1-adrenoceptors that suppress the GIRK conductance in adult rat locus coeruleus neurons. Br. J. Pharmacol. 135: 226-232.

Pudovkina, O.L., and Westerink, B.H.C. (2005). Functional role of alpha1-adrenoceptors in the locus coeruleus: A microdialysis study. Brain Res. 1061: 50-56.

