Electrophysiological study of the effect of cannabidiol on the dorsal raphe nucleus serotonergic neurons

Erik Aostri (erik.aostri@ehu.eus)a, Joseba Pineda (joseba.pineda@ehu.eus)a, Aitziber Mendiguren (aitziber.mendiguren@ehu.eus)a.

a Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), E-48940 Leioa, Bizkaia, Spain

Keywords: cannabidiol, 5-HT\textsubscript{1A} receptor, raphe nucleus, electrophysiology

Graphical Abstract

Abstract

Cannabidiol (CBD) is the main non-psychoactive cannabinoid found in the \textit{Cannabis} plant, which exerts several pharmacological effects including anxiolytic, antiemetic, antidepressant, antiepileptic and motor effects. \textit{In vivo} evidence suggests that these pharmacological effects could be mediated by serotonergic 5-HT\textsubscript{1A} receptors. The dorsal raphe nucleus (DRN), which is the main serotonergic cluster in the brain, expresses 5-HT\textsubscript{1A} receptor and plays a key role in the regulation of different functions such as mood and anxiety. To date, the nuclei involved in the action of CBD and the mechanisms by which it regulates 5-HT\textsubscript{1A} receptor are still unknown. Therefore, the aim of this study was to characterize the effect of CBD on the firing rate of dorsal raphe 5-HT neurons and 5-HT\textsubscript{1A} receptor activation by single-unit extracellular electrophysiological recordings \textit{in vitro}. Direct perfusion with CBD (30 \textmu M) slightly but significantly reduced the firing activity of DRN 5-HT cells. In order to study the effect of CBD on 5-HT\textsubscript{1A} receptor activation, we applied the cannabinoid in the presence of two different 5-HT\textsubscript{1A} receptor agonists: 8-OH DPAT (10 nM) and ipsapirone (100 nM). Application of 8-OH-DPAT or ipsapirone completely inhibited the firing activity of DRN 5-HT cells. However, in the presence of CBD (30 \textmu M) the inhibitory effects of 8-OH-DPAT and ipsapirone were reduced by 66\% and 53\%, respectively.
respectively. Finally, to discard the possible role of CBD as a competitive 5-HT\textsubscript{1A} receptor antagonist, we administrated CBD once the cells had been totally inhibited with ipsapirone. Perfusion with CBD (30 μM) failed to recover the firing activity of inhibited 5-HT cells, whereas 5-HT\textsubscript{1A} antagonist WAY 100635 (30 nM) recovered the firing rate of all 5-HT cells. In conclusion, these results suggest that CBD regulates the activity of 5-HT\textsubscript{1A} receptor in an indirect manner since it does not displace the agonist from the binding site.

References

