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Abstract: This study deals with the integration of merging highly accurate precipitation estimates from 9 
Global Precipitation Measurement (GPM) with sampling gap-free satellite observations from Meteosat 7 of 10 
Meteosat First Generation (MFG) to develop a regional rainfall monitoring algorithm for monitoring 11 
precipitation over India and nearby oceanic regions. For this purpose, we derived precipitation signatures 12 
from Meteosat observations to co-locate it against precipitation from GPM. A relationship is then established 13 
between rainfall and rainfall signature using observations from various rainy seasons. The relationship thus 14 
derived can be used to monitor precipitation over India and nearby oceanic regions. Performance of this 15 
technique was tested against rain gauges and global precipitation products including the Global Satellite 16 
Mapping of Precipitation (GSMaP), Climate Prediction Centre MORPHing (CMORPH), Precipitation 17 
Estimation from Remote Sensing Information using Artificial Neural Network (PERSIANN) and Integrated 18 
Multi-satellitE Retrievals for GPM (IMERG). A case study is presented here to examine the performance of 19 
the developed algorithm for monitoring heavy rainfall during flood event of Tamil Nadu in 2015. This is the 20 
first attempt to use near real time observations from GPM and MFG to monitor heavy precipitation over 21 
Indian region. Due to finer resolution and near real time availability, this technique can be used to monitor 22 
near real time flash floods. 23 
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1. Introduction 26 

Near Real Time NRT precipitation information at fine resolution is required to monitor flash 27 
floods. Unfortunately Indian region have poor density of ground based rain gauges and Radars. 28 
Moreover, usually rain gauge stations stop functioning during severe flood situatuions (Mishra, 29 
2015). Flood events are associated with a large spatial and temporal variation of rainfall and hence 30 
continuous NRT high resolution hourly satellite data is essential to monitor such events (Mishra and 31 
Srinivasan, 2013).  Such observations can be achieved by merging microwave precipitation estimates 32 
with rain signatures from geostationary satellites. Past researches report that cold observations from 33 
IR are associated with convective clouds and thus heavy precipitation (Mishra et al. 2010; Mishra 34 
2013). In the past few decades, various satellite precipitation products have become widely available 35 
for users. These data sets integrate precipitation estimates and signatures from different sensors and 36 
satellites into a precipitation product. These data sets include the Tropical Rainfall Measuring 37 
Mission Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) NRT product (Huffman et al., 38 
2007), the Global Satellite Mapping of Precipitation (GSMaP) (Kubota et al., 2007; Aonashi et al., 2009), 39 
Climate Prediction Centre MORPHing (CMORPH) (Joyce et al. 2004), Precipitation Estimation from 40 
Remote Sensing Information using Artificial Neural Network (PERSIANN) (Hsu et al. 1997), Hydro-41 
Estimator (H-E) (Scofield and Kuligowski, 2003), and Integrated Multi-satellitE Retrievals for GPM 42 
(IMERG) (Huffman et al. 2015).  Validation results show that most of these products have large 43 
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errors over Indian region (Mishra et al. 2010; Mishra 2013). Mishra et al. (2009a) reported that regional 44 
rain signatures derived for India outperform global rainfall signatures for their application over 45 
India.  Few efforts have been made to monitor rainfall over India and nearby region by synergistic 46 
use of multi-satellite sensors (Mishra et al. 2009b, 2010; Mishra et al. 2011a, b; Mishra, 2012; Mishra, 47 
2013). Availability of microwave measurements with broader swath and high frequency ice scattering 48 
channels from GPM provide a unique opportunity to merge accurate microwave rainfall information 49 
with Infrared observations from Meteosat over India. The GPM Core Observatory measures 50 
precipitation using two sensors: the GPM Microwave Imager (GMI) and the Dual-frequency 51 
Precipitation Radar (DPR).  A recent preliminary study reports that rainfall estimates from DPR 52 
onboard GPM are closer to the gauge estimates than those from PR onboard TRMM (Iguchi et al. 53 
2009).  54 

In this study, we have merged observations from combined DPR and GMI with Meteosat to 55 
monitor near real time precipitation over Indian region and nearby ocean. Validations have been 56 
performed using rain gauge based product to test the accuracy of the present approach for its 57 
application in heavy rainfall cases. 58 

2. Data used and study Area 59 

For the present study,Meteosat 7 data of Meteosat First Generation (MFG) is used. MFG provides 60 
images of the full Earth disc, and data for weather forecasts. Meteosat provides observations in 61 
Thermal Infra Red (TIR) and Water Vapor (WV) absorption band at half-hourly interval, with a 62 
spatial resolution of 4 km.Combined GMI-DPR based rainfall from GPM is also used in this study.  63 
This product is described by Grecu et al., (2009; 2016).  In order to test the performance of present 64 
technique, rainfall estimates from GSMaP, CMORPH, PERSIANN and IMERG has also been used in 65 
the present technique.Rain gauge observations from AWS is used to validate the performance of 66 
present technique.Study area spans from 10ºS-40ºN to 60Eº-100Eº. 67 

3. Methodology 68 

Multi-frequency observations at multiple channelsfrom Meteosat were used to filter out false 69 
rainfall signatures.  We used a cloud classification scheme devised by Roca et al. (2002) and adopted 70 
by Mishra et al. (2010) to delineate non rainy thin cirrus clouds. If brightness temperature in IR band 71 
(IRTB)>=270K and cloudy and brightness temperature in WV band (WVTB)<=246K then pixel 72 
represents thin cirrus clouds and is screened out. During day time, cloud microphysical properties at 73 
near IR observations and visible reflectance were used to screen in rainy pixels following criteria used 74 
by Rosenfeld and Gutman (1994). 75 

It was reported by Mishra et al. (2010) that few cirrus clouds were still undetected even after 76 
applying threshold based cloud classification. In order to screen out the non rainy cirrus clouds, we 77 
useda criteria developed by Adler and Negri (1988) as a second step. Following this approach, a slope 78 
(S) and a temperature gradient (Gt) wereestimated for each local temperature minimum (using 79 
brightness temperature (IRTB) at 11.5 µm). The terms Gtand S are computed by Eq. (1) and Eq. (2), 80 
respectively: 81 

Gt = IRTBavg- IRTBmin      (1) 82 

S=0.568(IRTBmin-217)                           (2) 83 

Where IRTBmin is the local minimum, and as in Adler and Negri (1988), IRTBavg is the mean 84 
temperature. It may be noted that local minima is computed for an area covered by 6 IR pixels (4 85 
pixels along the scan and 2 pixels across the scan).A large Gtshows convective clouds; a small 86 
Gtrepresents a weak gradient and shows the presence of cirrus clouds within the window. All pixels 87 
having Gtless than S are classified as cirrus clouds and therefore are rejected as non-raining clouds.  88 
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Following filtering out erroneous clouds, IRTB were co-located against combined GMI-DPR 89 
rainfall within 15 minutes of difference in which auto covariance function of rainfall reduces to about 90 
0.9 (Laughlin, 1981). "15 minutes of difference" is the maximum allowed time difference in 91 
simultaneous observations of GPM and Meteosat. Data re-sampling scheme is used to minimize the 92 
uncertainty in co-location due to difference in resolution. For the co-location process, rainfall from 93 
GPM is remapped at 0.1º grid. Now IR-Observations from Meteosat is also remapped at 0.1º grid. Co-94 
location process is similar as described in Mishra et al. (2010). It may be noted that present algorithm 95 
aims to estimate rainfall at 0.1º grid.  96 

 97 

Figure 1. Scatter plot between rainfall rate (from GPM) and (a) brightness temperature (from 98 
Meteosat) (b) and rain index. (c) Histogram of frequency at different bins. Precipitation bins are 99 
defined as 2 mm/h, 8 mm/h, 15 mm/h, 20 mm/h, 25 mm/h and 30 mm/h (Selected Bin sizes set to 100 
accommodate the entire rainfall spectrum). Figure Source (Mishra and Rafiq 2017, Dynamics of 101 
Atmospheres and oceans). 102 

For the co-location purpose, 18654 data points (re-sampled at 0.1º grid) consisting of rain events 103 
during the years 2015 and 2016 were used. Out of 18654 data points, 6642 were rainy pixels while 104 
12012 were no rainy pixels. A total number of 12862 were used for the independent validation 105 
purpose.This shows that out of 31515 (18654+12862) data points 41% of total data points were used 106 
for the validation purpose. 107 

Relationship between IRTB and rainfall is shown in figure 1a. It can be seen that heavy rainfall 108 
events are associated with cold brightness temperature representing convective and deep convective 109 
clouds. Good correlation between rainfall and IRTB may be attributed to the inclusion of good 110 
number of heavy rainfall events (convective) and delineation of erroneous cirrus clouds. 111 

A non rainy threshold of about 264K (IRTB0) is observed. We define rain index (RI) as follows: 112 

RI = (IRTB0/IRTB)                               (3) 113 
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IRTB>264K indicates RI<1 and is a representative of non rainy cases. Higher values of RI shows 114 
heavy rainfall associated with intense rainy systems. RIs thus estimated are collocated against GMI-115 
DPR rainfall to establish a regression equation between them (figure 1b).We have classified the 116 
precipitation spectrum (and corresponding brightness temperature and rain index) into 6 bins. These 117 
precipitation bins are defined as 2 mm/h, 8 mm/h, 15 mm/h, 20 mm/h, 25 mm/h and 30 mm/h.  Figure 118 
1c shows that histogram of number of occurrences of these bins.  119 

It can be seen from figure 1b that there are large scatters between rainfall and rain index which 120 
is attributed to various factors ranging from uncertainty caused by use of different sensors from 121 
different platforms (difference in viewing geometry from MFG and GPM), collocation errors, poor 122 
relationship between warm rain (light rain) and IR brightness temperature, and weak 123 
characterization of orographic rain from IR signature.  124 

Following equation is established between RI and rain rate: 125 

Rain rate (mm/h)=a + (b ×  RIc)        (4) 126 

Where a = -3.79 (mm/h), 127 

 b = 4.55 (mm/h), and  128 

c = 6.68.  129 

Coefficients 'a' and 'b' essentially characterize the relationship between rain rate and rain index, 130 
allowing for variation caused by scatter in rain rate and rain index. This relationship exhibits a 131 
Correlation Coefficients (CC) of 0.83, and Standard error of estimates of 6.20 mm/h. This relationship 132 
confirms the power law relationship between rain index and rainfall as observed by past researches 133 
(Mishra et al., 2009a; Mishra 2013).RI ranges from 0.86 to 1.37. It can be concluded from figure 1b that 134 
RI>1.3 indicates heavy rainfall cases 25 mm/h and above (observation of line of fit indicated by pink 135 
color in figure 1b).4. Discussion 136 

This section may be divided by subheadings. Authors should discuss the results and how they 137 
can be interpreted in perspective of previous studies and of the working hypotheses. The findings 138 
and their implications should be discussed in the broadest context possible. Future research 139 
directions may also be highlighted. 140 

4. Results and Discussion 141 

Aim of the present algorithm is to monitor near real time heavy rainy systems. Performance of 142 
this technique was tested by applying it to few flood events. We have used rain gauge observation 143 
over Tamil Nadu for validation of present algorithm during flood event of Tamil Nadu in 2015. 144 

Tamil Nadu witnessed heavy flooding during November- December in 2015. A case study has 145 
been performed for Tambram region (12.933ºN, 80.216ºE) of Kancheepuram district in Tamil Nadu 146 
during the severe flood events of 2015. For this purpose daily rainfall data from regional 147 
meteorological centre, Chennai has been used. Rain gauge based daily rainfall is estimated by 148 
accumulating rainfall in 24 hours ending 08:30 IST (03:00 GMT). For this validation purpose, hourly 149 
rainfall from IMERG, GSMaP_NRT, CMORPH_RAW, PERSIANN is accumulated in starting at 03:00 150 
GMT of the previous day to 03:00 GMT of the day named. 151 
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 152 

Figure 2. Rainfall over Tambram from Rain gauge, IMERG, GSMaP, CMORPH, PERSIANN and 153 
present technique during floods of 2015. 154 

It can be seen that satellite estimates underestimate heavy rainfall. Among satellite estimates, 155 
present technique is closest to rain gauge observations for monitoring heavy rainfall. 156 

5. Conclusions  157 

Present study merges rainfall information from combined GMI-DPR with Meteosat observations 158 
by using the high accuracy of GMI-DPR based rainfall estimates and continuous Meteosat 159 
observations to monitor heavy precipitation. It offers an opportunity to explore the climatic aspect of 160 
heavy precipitation at finer scale since MFG has long past records. Studies suggest that being able to 161 
monitor extreme rainfall at finer resolution would be sufficient to monitor flash flood (Mishra and 162 
Srinivasan 2013; Mishra 2015). Present algorithm monitors near real time heavy rainfall which is very 163 
crucial for near real time flash flood monitoring. Mishra and Rafiq (2017) used this technique to study 164 
heavy precipitation over Indian region during active phase of South West Monsoon season. This is 165 
the first attempt to monitor near real time heavy precipitation over India by synergistic use of 166 
multisatellite sensors from GPM and MFG. Past researches report that heavy precipitation events 167 
over Indian region have been changed as a result of warming (Goswami et al. 2006; Mishra and Liu 168 
2014). These heavy precipitation causes flood like disasters. Recently various parts of Indian region 169 
experienced flood like events (Mishra and Srinivasan 2013; Mishra 2015; Mishra 2016; Rafiq and 170 
Mishra 2017). Present technique can be very useful to monitor near real time flash flood events which 171 
can be helpful for mitigation and adaptation actions against flood related disasters. 172 
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