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Abstract: This paper deals with (both supervised and unsupervised) classification in multispectral 11 
Sentinel-2 images, utilizing the abundances representation of the pixels of interest. The latter pixel 12 
representation uncovers the hidden structured regions which are not often available in the reference 13 
maps. Additionally, it encourages class distinctions and bolsters accuracy. The adopted 14 
methodology, which has been successfully applied on hyperpsectral data  involves two main 15 
stages: (I) the determination of the pixels abundance representation and (II) the employment of a 16 
classification algorithm applied on the abundance representations. More specific, stage (I) 17 
incorporates two key processes namely: (a) endmember extraction utilizing spectrally 18 
homogeneous regions of interest (ROIs) and, (b) spectral unmixing, which hinges upon the 19 

endmember selection. The adopted spectral unmixing process assumes the Linear Mixing Model 20 
(LMM), where each pixel is expressed as a linear combination of the endmembers. The pixel’s 21 
abundance vector is estimated via a variational Bayes algorithm that is based on a suitably defined 22 
hierarchical Bayesian model. The resulting abundance vectors are then fed to stage (II) where two 23 
off-the-shelf supervised classification approaches (namely nearest neighbor (NN) classification and 24 
support vector machines (SVM)) as well as an unsupervised classification process (namely online 25 
adaptive possibilistic c-means (OAPCM) clustering algorithm), are adopted. Experiments are 26 
performed on a Sentinel-2 image acquired for a specific region of the Northern Pindos National Park 27 
in the northwestern Greece containing water, vegetation and bare soil areas. The experimental 28 
results demonstrate that the ad-hoc classification approaches utilizing the abundance 29 
representations of the pixels outperform the ones utilizing the spectral signatures of the pixels, in 30 
terms of accuracy. 31 

Keywords: spectral unmixing; classification; clustering; Sentinel-2 imagery; land cover. 32 
 33 

1. Introduction 34 

Land cover analysis and classification is essential for various environmental and mapping 35 
applications. Land classification yields to thematic maps which integrate land cover materials. 36 
Sentinel-2 data has gained leverage in the remote sensing community due to the high spatial and the 37 
high temporal resolution. Sentinel-2 multispectral high-resolution sensor (MSI) operates on thirteen 38 
different bands of which four have a resolution of ten meters, six a resolution of twenty meters and 39 
three a resolution of sixty meters. Hence, Sentinel-2 data provide information on the reflectance of 40 
the land surface for many different wavelengths on a local and regional scale. Regardless of the 41 
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sensor’s spectral resolution, these images are challenged by the presence of mixed pixels, which 42 
depict mixtures of distinct materials.  43 

Each mixed pixel is associated with the electromagnetic reflection of various materials measured 44 
in numerous spectral bands belonging to the surface depicted by the pixel, measured in numerous 45 
spectral bands. These measurements constitute the spectral signature of the pixel. Two processes are 46 
fundamental in analysis such as: (a) the detection of the constituent components of mixed pixels as 47 
well as the proportions in which they appear and, (b) the identification of homogeneous regions. The 48 
first objective is tackled via spectral unmixing and the second via the use of classification algorithms. 49 

Classification [1]-[4] partitions the set of pixels from the input image into compact, homogeneous 50 
groups. It is performed in either supervised or unsupervised way usually operating in the spectral 51 
signatures of the pixels. Hitherto, mixed surface features are tackled by supervised classification 52 
approaches, which require the availability of a labeled set of pixels. These pixels form the training set 53 
that is used for teaching the classifier the underlying pixel classification task in order to further 54 
classify the unlabeled pixels. Popular classification methods proposed in literature include the 55 
nearest neighbor classifier [5],[6] and the support vector machines (SVMs) [7].  56 

Several classification methods have been applied on Sentinel-2 images. In this work we assess 57 
the performance of a recently proposed classification method [2], originally proposed for 58 
hyperspectral images on Sentinel-2 data. The main idea of the methodology is to perform first spectral 59 
unmixing based ona asuitably selected set of endmembersd and represent each pixel by its associate 60 
abundance vector (constituting from the corresponding abundance values). Then, the classification 61 
of the pixels is performed on the abundance vectors of the pixels and not on their spectral signatures 62 
(actually two supervised and one unsupervised classification algorithms are utilized). To assess the 63 
performance of the adopted methodology on Sentinel-2 data, we compare with the case where 64 
spectral signature pixel representations are considered. To the best of our knowledge this is the first 65 
attempt of utilizing a combination of both spectral unmixing and classification tasks on Sentinel-2 66 
data.  67 

The area on which the methodology will be assessed is that of Northern Pindos National Park-68 
Greece (Sentinel-2 data). Section 2 describes the adopted algorithm. Section 3 demonstrates the results 69 
obtained by ad-hoc classification algorithms utilizing the spectral signatures and the abundances 70 
representations. Conclusion is summarized in Section 4.  71 

2. Methods  72 

2.1 Test Area 73 

The test area is a specified region of the Northern Pindos National Park in the northwestern 74 
Greece. This region is the largest protected forestry region with high topographical diversity. The 75 
image has a resolution of 30m consisting of 333×333 pixels and is depicted in Fig. 4(a). We utilized 76 
the image at 30m resolution instead of the one at 10m resolution in order to compare the results 77 
obtained by the proposed algorithm with the reference classification map provided at 30m resolution 78 
[6]. The image depicts the artificial lake of Aoos on the northwest of Metsovo and a small part of the 79 
mountains of Pindos. The region is dominated by grassland, prickly oaks and hornbeams, beech, 80 
black pine and deciduous oak. The verge of the mountain slopes is covered by Bosnian pine. Human 81 
agricultural activities are also present along the water basin. The image is atmospherically corrected 82 
and this process yielded to the reduction of the number of bands from 13 to 10, namely band 1 (443 83 
nm), band 9 (945 nm) and band 10 (1375 nm) have been removed. Four basic classes, namely Water, 84 
Dense Vegetation, Soil and Sparse Vegetation are specified.  85 

2.2 Adopted Methodology 86 

The adopted methodology is motivated by the properties of the abundances of ground materials 87 
present in the pixels of a Sentinel-2 image. Each pixel is represented by a vector of ten spectral bands 88 
and the original space is reshaped to the dimensionally reduced space of abundances. (see Figure 1). 89 
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In addition, since the abundance representation of a pixel unveils sub-pixel level information, this 90 
allows the proposed algorithm to identify possible refined structures within each region, which is 91 
usually not available in the ground truth maps. 92 

The scope is to employ first endmember extraction (EE) by identifying spectrally homogeneous 93 
regions (regions of interest, ROIs) and extracting the mean endmembers of the image based on the 94 
collected ROIs. Secondly, it employs a SU method that is based on the endmembers extracted by EE, 95 
in order to produce the abundance fractions for each pixel, which in turn form the so-called 96 
abundance vector of the pixel. These vectors from all pixels are fed to the classification process that 97 
groups pixels according to abundance representations.  98 

 99 

Figure 1. Spectral bands from the original spectral band space are dimensionally reduced to the less 100 
correlated abundance space.  101 

2.2.3. A. EE 102 

Aiming at selecting representative endmembers for each class, suitable regions of interest (ROIs) 103 
were selected. In our experiments we use four main land cover classes, namely (a) Water, (b) Dense 104 
Vegetation, (c) Soil and (d) Sparse Vegetation. All endmembers are calculated as the average values 105 
of the spectral signatures of the pixels in each ROI. Figure 2 depicts (a) the appropriate ROIs selected 106 
on the Sentinel-2 image (see Section 3: Fig. 4(a)), (b) the endmembers of four main classes, water, dense 107 
vegetation, soil, sparse vegetation. 108 

  

(a) (b) 

Figure 2. (a) ROIs selection for endmember extraction, (b) endmembers of four classes, water, dense 109 
vegetation, soil, sparse vegetation. 110 

 111 

2.2.4. B. SU 112 

The selection of appropriate endmembers is crucial so as to correctly estimate the abundance 113 
fractions. The spectral signature of the pixel, denoted by x, is assumed to follow the Linear Mixing 114 
Model (LMM). The latter adopts the hypothesis that the spectrum of a mixed pixel is a linear 115 
combination of its endmembers’ spectra as follows: 116 

 117 
nwx                                           (1) 118 
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where pL
pL

p 


 ,],...,,[ 21  , is the mixing matrix comprising the endmembers’ 120 

spectra in its columns (L-dimensional vectors pii ,...,2,1,  ), w is a 1p  vector consisting of the 121 

corresponding abundance fractions, named abundance vector, and n is an 1L  additive noise 122 
vector, which is assumed to be a zero-mean Gaussian distributed random vector with independent 123 
and identically distributed elements.  124 

The abundance fractions for each pixel should be non-negative and sum to one. The abundance 125 
vector for each pixel is estimated via a variational Bayes algorithm, called BiICE which is based on an 126 
appropriately defined hierarchical Bayesian model [8]. In algorithmic form the abundance vector can 127 
be written as: 128 

w = BiICE (Φ, x).  129 
BiICE is computationally efficient, provides sparse solutions without requiring the fine-tuning 130 

of any parameters and converges fast to accurate values even for highly correlated data. The 131 
determined abundance vector w is further used for each pixel representation at the classification 132 
process. Then, the abundance representations resulting from BiICE are fed to the classification 133 
process. 134 

 135 

2.2.5. C. Classification 136 

The classification is carried out in both supervised and unsupervised terms. Sepcifically, for the 137 
former case the nearest-neighbour classifier (NN) is employed, where every training example is 138 
stored with its label and a prediction is made for a test example by computing its distance to every 139 
training example. In addition to NN, SVMs are also utilized since they show , in general, superior 140 
performance to other classification methods. The advantage of SVM is that it successfully works with 141 
small number of training samples. Finally, for the unsupervised case, a clustering algorithm, called 142 
online adaptive possibilistic c-means (OAPCM), is exploited [9]. In OAPCM, pixels are being 143 
processed one by one and their impact is memorized to suitably defined parameters. Hence, the 144 
algorithm is flexible in tracking variations during the clustering formation. OAPCM starts with a zero 145 
number of clusters and during evolution it creates new clusters or merges existing ones.  146 

Figure 3 depicts a flowchart of the two case studies: A) spectral signatures classification and B) 147 
abundances representation classification. 148 

 149 

Figure 3. Flowchart of the two case studies: A) spectral signatures classification (red line), B) 150 
abundances representation classification (blue line). 151 

3. Results and Discussion 152 

Aiming at a quantitative evaluation, ad-hoc classification approaches proposed in literature such 153 
as the nearest neighbor (NN) classifier, the support vector machines (SVMs) and the unsupervised 154 
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OAPCM algorithm are utilized. The obtained results (classification maps) are validated in terms of 155 
accuracy based on the obtained confusion matrix as can be seen in Tables I and II. In both cases of 156 
supervised classification (NN, SVM), the four endmembers extracted in the EE process are used to 157 
train the classifiers whereas the remaining pixels are used for validation. It should be noted that, in 158 
the case where the abundances representations are used as input for classification, spectral unmixing 159 
is applied on the four endmembers as well as on the remaining pixels. The abundances 160 
representations are used to train the classifiers. As a result, classification maps are generated, 161 
providing information of the area of each land class. The classification utilizing the abundances 162 
representation (see Fig.3 case study B) achieves an average accuracy which is higher to the 163 
classification that utilizes the spectral signatures (see Fig. 3 case study A). The water and soil classes 164 
are successfully identified by the two case studies since the average classification accuracies are 165 
similar. However, the dense vegetation and sparse vegetation classes are not successfully identified. 166 
Results are shown in Fig. 4.  167 

  
(a) (b) 

   
(b1) (b2) (b3) 

   
(c1) (c2) (c3) 

Figure 4. (a) Band 8th of the Sentinel-2 image, (b) Reference map of four classes: water, vegetation, 168 

bare soil and soil-vegetation, (b1), (b2), (b3) classification results obtained by NN, SVM, OAPCM on 169 
spectral signatures, (c1), (c2), (c3) classification results obtained by NN, SVM, OAPCM on abundances 170 
representation. 171 

 172 

TABLE I  Comparative Results of Classification Algorithms in Terms of AA for Spectral Signatures 173 

 Water  Dense 

vegetation 

Bare Soil Sparse 

vegetation 

NN 93,49 80,44 86,86 76,26 

SVM 93,16 80,90 87,25 76,77 

OAPCM 94,89 55,25 86,41 65,99 

 174 
 175 
 176 
 177 
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TABLE II  Comparative Results of Classification Algorithms in Terms of AA for Abundances 179 

Representation 180 

 Water  
Dense 

vegetation 

Bare 

Soil 

Sparse 

vegetation 

NN 94,68 86,39 87,12 82,04 

SVM 94,90 84,73 88,00 79,41 

OAPCM 96,81 86,20 87,79 80,65 

4. Conclusion 181 

The objective of this study is to assess the performance of a methodology that has been 182 
successfully applied on hyperspectral data on Sentinel-2 data when supervised and unsupervised 183 
classification approaches are employed. The advantage of this methodology is that it integrates the 184 
abundances representation instead of the basic spectral signatures representation of the pixels. The 185 
abundances representation provides sub-pixel level information and in principle is capable of a more 186 
accurate mapping of land cover. The adopted methodology has been experimentally evaluated on a 187 
Sentinel-2 image of Northern Pindos National Park (Greece) which comprises water, vegetation 188 
(dense and sparse) and bare soil areas.  The performance of (two supervised and one unsupervised) 189 
classification algorithms proposed in literature utilizing the abundance representations is compared 190 
with the ones utilizing the spectral signatures in terms of accuracy. The experimental results 191 
demonstrate that the proposed algorithm is able to (a) correctly estimate the abundance vectors using 192 
a sparsity promoting unmixing scheme that produces the relevant abundance maps and (b) generate 193 
more accurate classification maps based on the available reference map.  194 
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