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Abstract: Glaciers exhibit a wide range of surface facies that can be analyzed as proxies for mass balance studies. 

Along with hydrological implications, these are in turn quintessential indicators of climate change. The use of 

moderate to high-resolution (MHR) data for mapping glacier facies has been performed previously; however, 

the use of very high-resolution (VHR) data for this purpose has not yet been fully exploited. This study uses 

WorldView-2 (WV-2) VHR data to classify available glacier surface facies on the Samudra Tapu glacier, located 

in the Himalayas. Traditional methods of facies classification using conventional multispectral data involve 

band rationing and/or supervised classification. This study explores glacier surface facies classification by using 

the unique bands available in the multispectral range of WV-2 to develop customized spectral index ratios 

(SIRs) within an object-oriented domain. The results of this object-based classification (OOC) are then compared 

with five popular supervised classification algorithms using error matrices to determine classification 

accuracies. The overall accuracy achieved by the OBIA approach is 97.14% (κ=0.96) and the highest overall 

accuracy among the pixel-based classification methods is 74.28% (κ=0.70). The present results show that the 

object-based approach is far more accurate than the pixel-based classification techniques. Further studies should 

test the robustness of the object-oriented domain for classification of glacier surface facies using customized 

sensor specific as well as transferable indices and the resultant accuracies. 
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1. Introduction 

Glaciers metamorphose according to climatic variations. The geometrical changes associated with these 

variations are often used to describe the recession or advancement of the glacier [1]. These parameters are then 

used to calculate the mass balance of the glacier by assessment of the net gain (net accumulation) or net loss (net 

ablation). Glacier facies represent regional differences in diagenetic stratification on a glacier owing to summer 

melt and winter accumulation characteristics [2]. Therefore, glacier facies are described as the zones of snow 

identified on a glacier, having a particular set of factors unique to that zone [3]. A recent study [4] analyzed the 

effects of glacier facies changes on the dimensional variations of glaciers, including the recession, deglaciation as 

well as the impact of climatic variables on glacial parameters. Thus, the changes in glacier facies can be called as 

the direct visual implication of the changes that the glacier as a whole is experiencing. Very high resolution 

sensors offer the opportunity to study glacial and cryospheric applications as a whole with highly accurate 

results [5-7]. Extraction of information from remotely sensed images can be performed by image classification. 

This study utilizes pixel based classification (PBC) and object oriented classification (OOC) to offer a 
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comparative analysis to determine which strategy is superior for this specific application. While previously 

extraction of facies has been performed on data acquired in the ablation season, this study aims to map the 

available facies on a dataset acquired during early winter. The accuracy of the classification is measured using 

error matrices. 

2. Experiments 

 

2.1. Study Area and Data  

This study focuses on the Samudra Tapu glacier which is situated in the upper Chandra basin of the 

Himalayas, in the district of Lahaul and Spiti, Himachal Pradesh (Figure 2). Samudra Tapu is the second largest 

glacier in the upper Chandra basin. For this study, we used WorldView-2 (WV-2) data. The multispectral (MS) 

range of this data product consists of new bands in addition of the traditionally MS bands Coastal (0.40-0.45 

µm), Blue (0.45-0.51 µm), Green (0.51-0.58 µm), Yellow (0.565-0.625 µm), Red (0.63-0.69 µm), Red Edge (0.705-

0.745 µm), NIR-1 (0.770-0.895 µm) and NIR-2 (0.86-1.04 µm). The MS product is of 2m spatial resolution, while 

the panchromatic product is of 0.5m resolution. An Aster GDEM was also used in this study. 

2.2. Methodology 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Methodology adopted in the present study. 

 

2.2.1. Preprocessing: 

 

We follow the preprocessing procedure [8] of image rectification and restoration in order to prepare the 

image for extraction of targeted information. The preprocessing performed in this study is depicted on Figure 1, 

which consists of five steps: a) Data calibration, b) Mosaicking, c) Pan sharpening, d) Generation of 3D surface 

and, e.) Extraction of glacier area. The raw data was obtained from DigitalGlobe in the form of 21 individual 

tiles. These tiles were already geometrically corrected to the projection system of UTM WGS 84 43N and the 

geographic co-ordinate system of GCS WGS 1984. Data calibration was carried out in two steps: (1) The 

conversion of raw DN values to at sensor spectral radiance, and (2) The conversion of at sensor radiance to at 

sensor or surface reflectance [9]. The latter is also known as atmospheric correction and was performed by using 

the FLAASH atmospheric correction module available in ENVI 5.3. Mosaicking of the calibrated data was 

performed by using seamless mosaicking (ENVI 5.3) to append each of the 21 tiles to produce a single image of 

the region. Following [10], we pansharpened the calibrated data by using Gram Schmidt (GS) which is the most 

optimal method for land cover classification. To extract the test glacier, precise delineation of the glacier 

boundary was crucial. To achieve greater accuracy, the pansharpened image was draped on a 3-Dimensional 
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surface model of the study area generated from Aster GDEM v2 with 30 m spatial resolution. The delineated 

boundary was then used to clip the study area from the whole region. This procedure was carried out in ArcGIS 

10.3. 

 

2.2.2. Pixel-based Classification 

 

The supervised classification performed in this study was undertaken using the TERCAT (Terrain 

Categorization) tool provided by ENVI 5.3. This tool is available under the SPEAR (Spectral Processing 

Exploitation and Analysis Resource) automated workflow tools. TERCAT was selected for classification 

purposes as it generates the output of multiple classification algorithms from a single input. The steps involved 

in this process include selection of regions of interests (ROIs) (pertaining to the kind of detectable facies), 

application of supervised classifiers and generation of output maps. Five supervised classifiers were considered 

for this study, which are: (a) Mahalanobis Distance (MHD), (b) Minimum Distance to Mean (MD), (c) Maximum 

Likelihood (MXL), (d) Parallelepiped (PP), and (e) Spectral Angle Mapper (SAM). 

 

2.2.3. Object-based/Oriented Classification 

 

ECognition Developer 64 was employed for classification using the OBIA method. Classification was 

carried out through a series of steps involving multiresolution segmentation, development of customized 

spectral indices, and establishment of thresholds and incorporation of these indices into rule sets. The 

multiresolution segmentation increases the overall homogeneity while reducing the average heterogeneity [11]. 

User-defined parameters such as image layer weights, scale parameter, shape/color, and compactness were used 

to carry out the segmentation. The following layer weights were assigned: Coastal=2, Blue=1, Green=2, 

Yellow=1, Red=1, Red Edge=2, NIR1=4, NIR2=3. The nature of the objects generated through segmentation 

depends on the values given to scale parameter, shape and compactness, which were 200, 0.4 and 0.8, 

respectively.  The segmented image was subsequently utilized for developing customized SIRs (Table 1) to 

facilitate optimal identification and extraction of the facies. The bands used to develop the indices were selected 

after a repetitive trial-and-error method to achieve the best possible combination in accordance to the spectral 

response pattern of the various targets (facies) and the band characteristics. The utilization of indices to extract 

facies creates the need for assigning thresholds. Therefore, one particular threshold from a single index or a 

combination of thresholds from more than one index can be considered to be an unique specification of the 

spectral characteristics of a particular facies [12]. The facies extracted using these combinations are wet snow, 

glacier ice, ice mixed debris, thick debris, and crevasses.  

 
Table 1. Customized Spectral Index Ratios used in this study. 

Index no. SIR1 SIR2 SIR3 

Mathematical 

expression 

𝑌𝐸𝐿𝐿𝑂𝑊

𝑁𝐼𝑅1 + 𝑁𝐼𝑅2
2

 
𝑅𝐸𝐷 𝐸𝐷𝐺𝐸

𝑁𝐼𝑅1 + 𝑁𝐼𝑅2
2

 
𝐵𝐿𝑈𝐸

𝑁𝐼𝑅1 + 𝑁𝐼𝑅2
2

 

 

Shadow areas are not all well discriminated by the proposed indices because much as the shadowed 

areas are a composite of varying spectral characteristics. This implies that the shadowed areas differ spectrally 

from each other as well as within themselves. Thus, the extraction of shadowed areas was carried out using 

digitization within the ArcGIS 10.3 domain. A minute portion of exposed valley rock within the glacier was also 

digitized. Therefore, the total identifiable facies including valley rock were seven. The original image with the 

shadowed areas was used in eCognition for facies classification. This caused overestimation of certain facies in 

the shadowed region. Masking of the shadowed areas would result in errors when calculating the areas of facies 

of the output generated from eCognition. Therefore, using the Erase tool in ArcGIS 10.3 shadowed areas were 

erased from each of the individual facies to obtain shape files having no overestimation in the shadowed region. 

The same procedure was repeated for facies having any overestimations in the region of valley rock. 
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2.2.4. Accuracy Assessment 

 

A total of 70 sample points were equally distributed through seven classes by visual scrutiny and analysis of 

spectral plots of the various targets on the image. The measures used to determine accuracy are (i) error of 

commission (EC), (ii) error of omission (EO), (iii) producer’s accuracy (PA), (iv) user’s accuracy (UA), (v) overall 

accuracy (OA), and (v) kappa statistics (κ). 

 

3. Results and Discussion 
 

 
Figure 2. Location map of the study glacier along with classification outputs, i.e. (a) OOC, (b) MHD, (c) MD, (d) MXL, (e) PP 

and (f) SAM. 
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Figure 3. Measures of accuracy of supervised classifiers. 

     The reference points were selected using visual interpretation and analysis of spectral plots of the target 

spectra. Error matrices were employed to measure the accuracy (Figure 3) of the classification outputs. On 

comparative analysis of the results obtained, it is evident that the pixel-based methods are inferior to the object-

based techniques. The parallelepiped classifier (Figure 2e) was the most inaccurate of the supervised classifiers 

tested in this study. This classifier obtained the most overestimation, as most of the reference pixels were 

classified incorrectly. This classifier also resulted in the most underestimations, as it produced the most amount 

of unclassified area. The Kappa statistics (Figure 3) obtained by the PP classifier rendered a negative value (-

0.15). This could be due to the large areas left unclassified. Among the other supervised classifiers, the 

performance of the SAM (Figure 2f) was only marginally better than PP. However, MXL (Figure 2d) and MD 

(Figure 2c) delivered below acceptable standards of accuracy with overall accuracies of 68.57% (ĸ=0.63) and 

52.86% (ĸ=0.45), respectively. MHD (ĸ=0.7) achieved the lowest error of commission (30.43%) and omission 

(25.71%) (Figure 3), while delivering the highest overall accuracy of 74.28% among the pixel-based classifiers. 

The OOC method (Figure 2a) was outstanding as it achieved remarkably low errors of inclusion and exclusion 

(2.85% each), while delivering an overall accuracy of 97.14%. With a kappa index of 0.96, this proved to be the 

most accurate and reliable classification scheme (Figure 3). 

 

4. Conclusion 

The generation of the 3D surface to facilitate delineation of ROI greatly improved the understanding of the 

topography, thus, increasing the precision of delineation. One of the key features of this study is the creation of 

the new customized SIRs to extract facies within the OBIA domain. These indices proved to be excellent not only 

for establishing spectral thresholds, but also in aiding the utilization of contextual features. Although post 

classification adjustments were necessary to extract maximum possible details for the OOC scheme, the results 

are unmatched. The pixel-based classifiers yielded sub-par levels of accuracy and were clearly not suitable for 

the unique conditions offered by the data used. A significant feature of this study is that it was able to map 

glacier facies without the use of SWIR bands. The band combinations from the MS range of WV-2 can be 

examined further for generation of more unique indices. The current SIRs can also be tested to determine their 

transferability. 
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The following abbreviations are used in this manuscript: 

 

OBIA: Object Based Image Analysis 

GDEM: Global Digital Elevation Model 

NIR: Near Infrared 

SIR: Spectral Index Ratios 

SWIR: Short Wave Infrared 
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