Sentinel-2 Pan Sharpening Comparative Analysis

Gordana Kaplan, Ugur Avdan

2nd International Electronic Conference on Remote Sensing 22 Mart – 5 April 2018

Overview

- IntroductionLiterature Review
- Data
- Methods
- Results
- Conclusion and Discussion

Pan-Sharpening

- Pan-sharpening is a technique of merging high-resolution panchromatic and lower resolution multispectral imagery to create a single high-resolution multispectral image.
- The panchromatic band is a grayscale image that covers/combines the visible portions of the electromagnetic spectrum.

20-meters

10-meters

10-meters

Sentinel-2

	Central	Resolution
Sentinel-2 Bands	Wavelength (µm)	(m)
Band 1 - Coastal aerosol	0.443	60
Band 2 - Blue	0.490	10
Band 3 - Green	0.560	10
Band 4 - Red	0.665	10
Band 5 - Vegetation Red Edge	0.705	20
Band 6 - Vegetation Red Edge	0.740	20
Band 7 - Vegetation Red Edge	0.783	20
Band 8 - NIR	0.842	10
Band 8A - Vegetation Red Edge	0.865	20
Band 9 - Water vapour	0.945	60
Band 10 - SWIR - Cirrius	1.375	60
Band 11 - SWIR	1.610	20
Band 12 - SWIR	2.190	20

- > Sentinel-2 does not offer panchromatic image.
- However, it does offer four 10-meter bands!

Sentinel-2 Panchromatic Band!!!

- Taking an advantage of the four fine spectral resolution bands, panchromatic band can be produced and used in the Sentinel-2 image fusion for producing ten fine spatial resolution bands!
- I. Selva et al. proposed averaging all four fine resolution bands in order to create a panchromatic band (Pan1).
- II. Gasparovic and Jogun used Band 8 for fusing Band 8A, 11 and 12, and used the average of Band 4 and Band 8 for the 5-7 Vegetation Red Edge bands (Pan2).
- III. Weng at al. used Band 8 for fusing Band 6,7 and 8a, and Band 4 for fusing Band 5, 11 and 12 (Pan3).

Methods

- In order to compare the three methods for producing panchromatic band, three different image fusion/pan
 Sharpening techniques have been performed on two Sentinel-2 images.
- 60-meters Bands were not taken into consideration.
- For the statistical comparison,Wald`s protocol was followed.

Flowchart of the methodology

Results (Qualitative Analyses)

- Results for a sub-area from the 10.08.2017 image (RGB 12, 8a, 5); a) 20 m image; b) Pan 1; c) Average value from Band 4 and Band 8; d) IHS Pan1; e) HPF Pan1; f) WPC Pan1; g) IHS Pan2; h) HPF Pan2; i) WPC Pan2; j) IHS Pan1; k) HPF Pan1; l) WPC Pan1.
- HPF results lead to spectral distortion.
- Spectral distortion can be also noticed in the WPC results where the urban features cannot be clearly observed.
- The IHS results tend to be superior over WPC and HPF in that order.

Results (Quantitative Analyses)

Table 1. Quantitative analyses of the image fusion techniques for the 30.08.2016 image

		CC	UIQI	RASE	SAM
Ideal		1	1	0	0
IHS	Pan1	0.935	0.942	2.17	0.019
	Pan2	0.947	0.943	4.40	0.019
HPF	Pan 1	0.943	0.933	1.49	0.020
	Pan2	0.952	0.952	4.16	0.018
WPC	Pan1	0.971	0.923	1.36	0.001
	Pan2	0.987	0.983	1.81	0.009

■ Table 2. Quantitative analyses of the image fusion techniques for the 10.08.2017 image

		CC	UIQI	RASE	SAM
Ideal		1	1	0	0
IHS	Pan 1	0.992	0.990	2.23	0.029
	Pan2	0.968	0.959	2.75	0.030
	Pan3	0.989	0.979	2.38	0.040
HPF	Pan 1	0.990	0.981	2.23	0.028
	Pan2	0.966	0.956	2.70	0.191
	Pan3	0.956	0.953	2.71	0.231
WPC	Pan 1	0.966	0.956	2.70	0.026
	Pan2	0.996	0.987	1.75	0.018
	Pan3	0.998	0.989	1.64	0.017

Results (Quantitative Analyses)

Table 3. Quantitative analyses of the image fusion techniques for Band 6 of the 10.08.2017 image

		Bias	CC	UIQI	SAM
Ideal	Pan	0	1	1	0
IHS	Avg	28.26	0.987	0.977	0.030
	(Red+NIR) /2	29.38	0.990	0.980	0.030
	NIR	31.12	0.989	0.980	0.039
HPF	Avg	1.013	0.966	0.954	0.193
	(Red+NIR) /2	0.97	0.967	0.953	0.028
	NIR	0.81	0.966	0.953	0.205
WPC	Avg	22.66	0.997	0.989	0.020
	(Red+NIR) /2	27.01	0.998	0.987	0.018
	NIR	23.25	0.998	0.990	0.015

Conclusion

- All of the panchromatic bands are able to produce accurate results in downscaling Sentinel-2 20-m bands. In two out of three cases the first method was superior, while in the third case the results of the second and third methods were almost identical.
- Using a single panchromatic band is less time consuming and more practical.
- For the two images used in this paper, the superior fusion method was WPC with almost ideal CC (0.998) and SAM (0.001) values.
- Band 6 is best fused with a panchromatic band produced as an average value from Band 4 and Band 8.

References

- Selva, M., et al., *Hyper-sharpening: A first approach on SIM-GA data*. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015. 8(6): p. 3008-3024.
- Wang, Q., et al., *Fusion of Sentinel-2 images*. Remote sensing of environment, 2016. **187**: p. 241-252.
- Gašparović, M. and T. Jogun, *The effect of fusing Sentinel-2 bands on land-cover classification*. International Journal of Remote Sensing, 2018. **39**(3): p. 822-841.
- Jawak, S.D. and A.J. Luis, *A comprehensive evaluation of PAN-sharpening algorithms coupled with resampling methods for image synthesis of very high resolution remotely sensed satellite data*. Advances in Remote Sensing, 2013. **2**(04): p. 332.
- Jagalingam, P. and A.V. Hegde, A review of quality metrics for fused image. Aquatic Procedia, 2015. 4: p. 133-142.
- Li, S., Z. Li, and J. Gong, *Multivariate statistical analysis of measures for assessing the quality of image fusion*. International Journal of Image and Data Fusion, 2010. 1(1): p. 47-66.
- Wald, L. Quality of high resolution synthesised images: Is there a simple criterion? in Third conference" Fusion of Earth data: merging point measurements, raster maps and remotely sensed images". 2000. SEE/URISCA.

Thank you for your attention !

ANADOLU UNIVERSITY

Gordana Kaplan, Ugur Avdan

2nd International Electronic Conference on Remote Sensing 22 Mart – 5 April 2018

kaplangorde@gmail.com; uavdan@anadolu.edu.tr