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Abstract: Clouds and cloud-shadow are a persistent problem in all optical satellite imagery. Plenty
of methods have been suggested in the literature to address this problem, and reconstruct the
missing part of the optical signal. In this work, three methods representative of different approaches
to the cloud removal problem are compared. The first method is temporal fitting using Fourier
series, which benefits from the temporal continuity of the signal. The second method uses sparse
spectral unmixing to fill in the missing areas. The third method employs radiometric consistency
as a tool to determine the missing part of the signal. These three methods are first presented and
their theoretical background described, followed by a discussion of their implied assumptions and
general performance. A set of experiments using Landsat 8 time series with diverse land cover types
were conducted. The quantitative results of the three methods using simulated clouds are presented.
Finally, some concluding remarks about the relative advantages of the three approaches are listed,
in addition to some recommendations about their use.

Keywords: Cloud removal, image reconstruction, temporal fitting, spectral matching, radiometric
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1. Introduction

For any optical space-borne imaging sensor, the atmosphere represents an unavoidable noise
source. Around 70% of the earth surface is covered by clouds in any single moment [1], which makes
the phenomenon of cloud and cloud-shadow a persistent one. It is possible to minimize the effect
of clouds and other similar atmospheric degradation by employing a signal recovery method. There
are three main directions researchers often follow to implement such a method. The first category
of algorithms which is robust in theory but often difficult to implement is sensor fusion, which has
strict requirements, like matching temporal and spatial resolution, making it unrealizable in many
cases. Knauer et al. [2] fused MODIS data with Landsat 8, to generate high temporal frequency,
high spatial resolution, cloud-free time series. The algorithm uses linear regression to estimate the
value of each pixel at Landsat resolution, by using two time series, one for MODIS and the other for
Landsat. By fusing three different types of data, these are low resolution optical image and a SAR
image, along with the target high resolution multispectral data, Li et al.[3] recover the missing part
in the latter. The algorithm uses dictionary group learning to relate the three data sources together.
The coefficients used to recover the cloudy patches are found using non-local joint sparse coding. A
second class of methods, which is only sporadically investigated, is to reconstruct the missing part
of an image using the clear part, a technique known as inpainting. Inpainting family of methods
uses the cloud free part of the image to reconstruct the contaminated part. Maalouf et al. [4] used
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the continuity of geometric flow of the image to synthesize the geometry inside the cloudy part.
Bandlet transform followed by multiscale grouping is employed to learn the geometrical structure
of the clear portion of the image. In [5], Cheng et al. propose an inpainting algorithm based on
a multichannel nonlocal variational model. A nonlocal operator is formulated within a variational
framework, then an iterative optimization algorithm is used to find the weights for this operator. The
third direction in dealing with the cloud problem has got much more attention, that of using a time
series to interchangeably recover the missing parts in all individual scenes. The idea here is to use the
temporal correlation of the signal to predict the missing part. The underlying assumption is that the
signal is continuous in time.

Xu et al. [6] suggest a method based on sparse reconstruction. The algorithm learns
multitemporal dictionary using the cloud-free parts of the images. Instead of random dictionaries
as in the case of [7], the dictionary for the cloudy image is calculated using iterative optimization
method. Cheng et al. [8] present an algorithm that fills the cloud contaminated areas pixel by pixel. A
matching pixel is found using a spatio-temporal Markov Random Field (MRF). A cloud-free reference
image is used in the optimization of MRF energy terms. The method is applicable to different sensors
(MODIS, Landsat, etc.).

A good review for many of the recent work about image reconstruction in satellite images
recovery is presented in Shen et al. [9]. The different algorithms have been categorized according
to the data relationship they exploit. This led to four different types of algorithms, spatial methods,
spectral methods, temporal methods and hybrid methods which combine more than one approach.

To the best of our knowledge, there is no comprehensive comparison of the different methods
suggested for the problem of cloud removal. Therefore, it is extremely difficult to decide which
method to use for what kind of data or what type of task. This work investigates three methods for the
challenging problem of cloud recovery, these methods are compared from a theoretical perspective as
well as empirically. The relative advantages expected from theory are tested using diverse data sets,
representing urban, crops and bare-land.

2. Method

A brief overview of the three compared algorithms is presented below.

2.1. Temporal Fitting using Fourier Series

Brooks et al. [10] approached the problem of cloud removal as a regression problem in the time
domain. The scenes are stacked together to form a time series, with missing parts in some of the
scenes or all of them. The algorithm assumes a cyclic temporal signal, the full cycle length is typically
an integer number of years.

The algorithm performs harmonics fitting at a pixel level using Fourier series. For each corrupted
pixel a vector of length N is constructed, where N is the cycle length. For a year cycle, N = 12, where
each month is represented by one scene. For a pixel p, which has a spectral vector b = {b1, b2, ..., bd},
for a time series of length d. If the pixel is cloudy, and falls within a temporal gap exceeding a fixed
threshold g, then the algorithm fills it as follows:

• Interpolate p to produce the full length time series b̃ = (b, b f ill), with length N. The interpolated
points are only there to get a better estimate of the harmonics parameters

• Use least square estimation to estimate the coefficients

T = (1 sin(t) cos(t) . . . sin(nt) cos(nt)) (1)

a = (T′T)−1T′b (2)
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• Discard the filled point, then use the found coefficients a to estimate the point

p̃ = a0/2 +
N

∑
n=1

an cos(2πnt) + bn sin(2πnt) (3)

In this work the standard one year cycle was used, with d = 12. The gap was set to 1 to achieve
one scene per month. The apparent advantage of Fourier fitting is its ability to tackle any time series,
regular or not. It can also be adapted to multi-year long time series.

2.2. Unmixing

The Sparse Unmixing-Based Denoising (SUBD) is used typically in hyperspectral data to restore
bands which are affected by low signal-to-noise ratio. If multispectral data is stacked in a form of a
time series, it is possible to use the same principle in the problem of cloud removal, provided that
enough scenes are available. For Landsat data, with 6 usable bands, it is possible to use SUBD with
as few as 5 scenes.
The main principle of the method is to recover a missing pixel as a linear combination of endmembers,
with linear weights.

m̃ =
k

∑
i=1

sixi (4)

where m̃ is the reconstructed pixel, xi are the endmembers, k is the number of endmembers, and si
the corresponding weights. Cerra et al. [7] applied SUBD to recover the cloudy parts of multispectral
time series.
To implement this method, LARS solver was used, with 100 randomly selected endmembers as in
the original paper. The unmixing method can recover the missing parts with good quality, as long as
enough data to select the endmembers is available.

2.3. Information Cloning

The information cloning method developed by Lin et al. [11] addresses the cloud recovery
as a global optimization problem. It utilizes a temporal correlation of multitemporal images, and
clones patches from cloud-free images which match well with radiometric conditions of the reference
image. The algorithm solves Poisson equation using Dirichlet boundary conditions

∆ f = div V (5)

where f is an unknown function responsible for generating the image; V is a guidance vector.

• calculate the image quality factor SSIM for each scene

SSIM(IT , IR) =
(2µIT µIR + C1) (2σIT IR + C2)

(2µ2
IT
+ µ2

IR
+ C1)(σ

2
IT
+ σ2

IR
+ C2)

(6)

where, µI is mean of image I
IR the reference image and IT the target image
σIT IR is the covariance coefficient between images IT and IR
C1, C2 are constants
Only the cloud-free pixels are used in the computation of SSIM

• sort the SSIM values for all images in an ascending order (SSIM = 1.0 being the best match,
and SSIM = −1.0 the worst)

• extract the patches from the best images
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• calculate the percentage of clouds in similar patches, discard any patch with cloud coverage
higher than a specified threshold (set to 80%)

• calculate the guidance vector V for each of the reference images (consider the images selected
in the step above)

V = IR(p)− IR(q) (7)

where, p is the target pixel, q one of its neighbors (4th neighborhood used)
• The relaxation iterative method was used to solve the equation.

The information cloning method guarantees radiometric consistency, this means the reconstructed
parts will tend to have a natural look.

3. Results

To evaluate the relative performance of the three different algorithms, an artificial cloud-mask
was used. The mask was taken from an actual mask of a cloudy scene, 11% of the scene is covered
by clouds and shadow. Starting from a nearly cloud-free time series, the effect of the clouds and
cloud-shadow was simulated using a cloud- mask with rather realistic clouds and shadows. Figure
1 depicts the output of the different algorithms in reconstructing the cloudy part of the image. The
shadows are always treated like clouds in all used algorithms.

Different land cover types were tested. The scenes used were covered by three different cover
types, crops, urban and bare soil. As can be seen, all methods work quite well for this land cover type
(crops), Fourier has some radiometric discontinuity at the borders, which is to be expected especially
if rapid changes happen in between the scenes. Unmixing and cloning achieve good results.

Table 1. Error measures for the three approaches applied to different land covers

Method MSE MAE R2

Fourier crops 0.31 9.2 0.996
bare soil 0.05 8.2 0.999
urban 0.25 3.8 0.995

Unmixing crops 0.04 3.7 0.999
bare soil 0.02 3.1 0.999
urban 0.16 5.6 0.996

Cloning crops 0.1 11.3 0.997
bare soil 0.06 10.8 0.999
urban 0.42 11.4 0.986

Table 2. Visual appeal indicators of all methods on various land covers

Method PSNR [dB] SSIM

Fourier crops 53.3 0.998
bare soil 61.2 0.999
urban 54.2 0.997

Unmixing crops 61.8 0.999
bare soil 64.4 0.999
urban 56.0 0.998

Cloning crops 58.2 0.886
bare soil 60.5 0.999
urban 51.9 0.990

Table 1 and 2 are computed for a time series of 10 scenes, with the target scene, which is the
scene with the simulated clouds, in the fourth position. As can be seen in the table, all methods work
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Figure 1. Applying the three different algorithms on a crop scene. The cloud cover is 11% of the scene.
a) is the original scene b) the cloud mask c) shows the overlaid mask on top of the scene d) shows the
output of the Fourier method e) Unmixing method and f) Cloning method. g,h,i are the difference to
the ground truth

considerably well with bare soil scene, with the lowest Mean Square Error (MSE), Mean Average
Error (MAE), and R2 consistently. The scene is very homogeneous with no challenge in recovering
any part of it. This can also be confirmed by the visual metrics found in Table 2. This table lists SSIM
measure Equ.(6), and the Peak Signal to Noise Ratio (PSNR), computed as

PSNR = 10 ∗ log(L2/MSE) (8)

where, L is the maximum radiometric value possible for the data.
SSIM and PSNR are structure and visual measures rather than error measures. For both measures
larger numbers indicate higher visual appeal of the image. For the algorithm performance, it is
evident that the Unmixing algorithm is the best performer, achieving the lowest error in Table 1 and
the best visual appeal in Table 2. The errors and visual appearance of the other two algorithms is not
consistent across land cover types.

3.1. Failure modes

There are various assumptions behind each of these methods, which lead to degradation of the
accuracy once any of them is not fulfilled. The most notable assumption is the temporal correlation
between the images, this is valid for all of the algorithms. If some rapid changes occur in the corrupt
part of any scene, all methods will fail to recover a good estimate of the new land cover, they
would rather use the temporal history to recover a temporally or radiometrically consistent scene.
In addition to that, the following points apply to individual methods.

• Fourier fitting requires small gaps between the scenes, if the distribution of scenes along the
time line is very irregular, it will work rather well for the dense part of the timeline, but resorts
to simple linear interpolation in the sparse part of the line.
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• Unmixing needs enough representation of each land cover in the visible part of the scene. As
the dictionary is built by random sampling, the land cover types with very few cloud-free pixels
will be difficult to include in the dictionary, therefore difficult to recover.

• Information cloning requires continuity in both temporal and radiometric spaces. If abrupt
changes occur at the cloud boundary, recovering the scene will be very difficult, as the Poission
equation is solved using the boundary conditions.

4. Conclusion

The cloud removal problem is still an active area of research, by comparing different algorithms,
it is possible to give some guidelines about which algorithm to use in which case. From the results
of the experiments, it is possible to conclude that the unmixing algorithm performs well, but this
is rather difficult to generalize beyond the scope of these experiments. With different conditions,
namely, dictionary size, cloud size and time series length, the performance of the unmixing method
will change drastically.
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