

1 Conference Proceedings Paper

2 Estimation of Natural Hazard Damages by Fusion of

3 Change Maps Obtained from Optical and Radar

4 Earth Observations

5 Reza Shah-Hoseini 1,*, Abdolreza Safari ² and Saeid Homayouni ³

- Assistant Professor in School of Surveying and Geospatial Engineering, College of Engineering, University
 of Tehran; rshahosseini@ut.ac.ir
- Professor in School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran; asafari@ut.ac.ir
- 10 ³ Assistant Professor in Department of Geography, University of Ottawa; saeid.homayouni@uOttawa.ca
- 11 * Correspondence: rshahosseini@ut.ac.ir; Tel.: +98-021-6111-4527
- 12 Published: date
- 13 Academic Editor: name

14 Abstract: The Earth's land-covers are exposed to several types of environmental changes, issued by 15 either human activities or natural disasters. On 11 March 2011, an earthquake occurred at about 130 16 km of the east coast of Sendai City in Japan. This earthquake has been followed by a huge tsunami, 17 which caused devastating damages over the wide areas in the eastern coastlines of Japan. Due to 18 the occurrence of natural disasters across the world, there is a strong need to develop an automated 19 algorithm for fast and accurate extraction of changed landscapes within the affected areas. Such 20 techniques can accelerate the process of strategic planning and primary services for people to move 21 into shelters, damage assessment, as well as risk management during a crisis. Therefore, a variety 22 of change detection (CD) techniques has been previously developed, based on various requirements 23 and conditions. However, the selection of the most suitable method for change detection is not easy 24 in practice. To our best of knowledge, there is no existing CD approach that is both optimal and 25 applicable in the cases of using a variety of optics and radar remote sensing images. In order to 26 resolve these problems, an automated CD method based on Support Vector Data Description 27 (SVDD) classifier is proposed. This method used the information contents of radar and optical data 28 simultaneously by decision level fusing of obtained change maps from these data. In order to 29 evaluate the efficiency of the proposed method and extract the damaged areas, the Sendai 2011's 30 tsunami was considered. Various optical and radar remote sensing images from before and after of 31 Sendai 2011's tsunami acquired by IKONOS and Radarsat-2 were used. The results confirmed the 32 fundamental role and potential of using both optical and radar data for natural hazard damage 33 detection applications.

Keywords: Natural hazard; Change detection; SVM; SVDD; Decision level fusion; radar and optical
 imageries

36

37 1. Introduction

38 Due to the occurrence of natural disasters across the world, there is a strong need to develop an 39 automated algorithm for fast and accurate extraction of changed landscapes within the affected areas. 40 Such techniques can accelerate the process of strategic planning services for people to move into 41 shelters, damage assessment, as well as risk management during a crisis [1,2]. Therefore, several

- 42 methods have been developed for this purpose and efforts were put in considering low and medium
- 43 resolution imagery [3]. Changes detection in multi-temporal remote sensing images of high spatial
- resolution is challenging. In the case of low resolution images, change detection techniques are mostly
 based on analysis of spectral and statistical information [4]. Such methods may be efficient for broad-
- 45 based on analysis of spectral and statistical information [4]. Such methods may be efficient for broad-46 scale images or large-scale changes for reason that noise caused by registration errors and radiometric
- 47 variation can be restricted to low level compared to real changes by preprocessing or other means.
- 48 But for high resolution images, there are many new problems to be concerned in design of change
- 49 detection algorithms. First, accurate registration (e.g., half or quarter pixel accuracy) of different
- 50 images is not easily achieved. Second, variations of lighting and environmental conditions are rather
- 51 locally and diversified between different images, such as shadow of buildings [4]. Besides these, there
- are more imaging noises in high spatial resolution images. Finally, in many applications, users desire
 to detect small size changes including lines, buildings, bridges and other man-made targets.
- 55 to detect shall size charges including lines, buildings, bridges and outer main indee targets. 54 However, the performances of current change detection methods are not satisfying for high spatial 55 resolution remote sensing images in both effect, efficiency and false alarm rates are relatively high
- 56 [4].

57 Recently, Support Vector Machines (SVM) and Support Vector Data Description (SVDD) 58 classifiers have demonstrated their effectiveness in several remote sensing applications. The success 59 of such approaches is related to the intrinsic properties of this classifiers: can handle ill-posed 60 problems and to the curse of dimensionality, provides robust sparse solutions and delineates 61 nonlinear decision boundaries between the classes [3]. In order to take advantage of the large amount 62 of information present in the multispectral difference image, we formulate the change detection 63 problem in the higher dimensional feature space [5]. As all kernel methods, SVMs and SVDD show 64 some interesting advantages over other techniques, like intrinsic regularization and robustness to 65 noise and high dimensionality [5], [6], [7], [8], [9], [10]. On the other hand, specify the threshold 66 requires prior knowledge of the nature of the data, the study area, skilled user and often is associated 67 with a large error.

68 As mentioned, in high spatial resolution images the underlying class distributions are often 69 strongly overlapped, resulting in hardly classifiable pixels even using robust methods as SVM. The 70 high within-class variances as well as the low between-class distance, due to the low spectral 71 information, increase the need for approaches that enhance separability between the different classes. 72 On the other hand, in most of the above studies, the benefits of combining optical and radar images 73 have not been used. While radar images with different polarizations contribute greatly to the 74 separation of complex land cover classes. Radar images are sensitive to scattering processes and are 75 affected by the shape, direction, and dielectric properties of scatterers.

76 In order to solve these problems, in this paper, an object-level and kernel-based change detection 77 method based on the integration of object-based image analysis (OBIA) and support vector data 78 description (SVDD) method was proposed. This framework is indeed an automatic CD framework 79 for either optical or radar remote sensing data, where users need easy and rapid access to real-time 80 geospatial information to support disaster management. This proposed kernel-based method leads 81 to a strong decrease in the false alarm rate (classifying a background pixel as a change class), and a 82 slight accuracy improvement in the generated change map. This method used the information 83 contents of radar and optical data simultaneously by using the decision level fusing of obtained 84 change maps from these data.

85 2. Experiments

86 2.1. Case Study and Remote Sensing Data

In order to assess the effectiveness of the proposed approach, the Sendai 2011's tsunami was considered as the case study, where multi-temporal optical and radar images were collected by a variety of satellite remote sensing sensors. These data sets have been acquired before and after this natural disaster. In Japan, on March 11, 2011, at 05:46:23 UTC, an earthquake occurred near the

- 91 subduction plate boundary between the Pacific and North American plates. The epicenter has been
- 92 located at about 130 km east of Sendai City at a depth of about 32 km. This earthquake has been
- 93 followed by a tsunami caused devastating damages over wide areas of the East Japan, particularly
- 94 along with the coastline of the Pacific Ocean [11]. In order to extract the destroyed areas, we
- 95 considered two different data sets acquired by both optical and radar sensors, i.e. IKONOS and
- 96 Radarsat-2. The geographical location and the extent of the study area over Sendai, Japan is shown
- 97 in Figure 1 (a).

Figure 1. (a)The geographical location and the extent of the study area over Sendai, Japan and (b) theoverview of proposed decision fusion based change detection method.

100 The acquisition dates, spectral and spatial resolutions of these image data sets from Sendai,101 Japan are presented in Table 1.

102

103 **Table 1.** The acquisition dates, spectral and spatial resolutions of imageries from Sendai, Japan.

Dataset		Pre-change acquisition	Post-event acquisition	Bands Specifications	Spatial Resolution (m)
Condoi	IKONOS	Dec 11, 2010	Mar 28, 2011	R,G,B, NIR	3.2
Japan	Radarsat- 2	Mar 17, 2010	Mar 12, 2011	C-Band (HH)	6.25

104

105 Optical and radar remote sensing images from before and after of Sendai 2011's tsunami 106 acquired by Radarsat-2 and IKONOS are illustrated in Figure 2.

109 2.2. Methodology

110 Proposed decision fusion based CD framework consists of several steps, including: (a) Pre-111 processing step, (b) Object-based classification, (c) kernel parameter estimation, (d) one class classifier 112 and (e) change maps fusion. In the first step of proposed CD method, the geometric and the 113 radiometric pre-processing performed on the multi-temporal images. In each case study, optical 114 multi-temporal images were co-registered manually to each other, while radar images were co-115 registered automatically using an angular histogram based co-registration method [12]. Clouds in 116 optical images were symmetrically masked. Figure 1 (b) presents the flowchart of this automatic 117 decision-based change detection method. The mathematical details for each of the steps in the 118 proposed CD framework are presented in [14,15].

119 In the second step, the pre-change image was classified using an object-based support vector 120 machines (SVM) classifier. For each class of interest in this image, SVDD classifier was then trained 121 using randomly selected samples. At this stage, the SVDD separation function, in the form of a hyper-122 sphere in high dimensional space, covers the pixels of this class of interest. All corresponding pixels 123 in the post-event image enter then into the SVDD classifier as unknown pixels. If the unknown pixel 124 in the post-event image does not belong to the no-change (target) class, it will be placed outside of 125 the hyper-sphere and considered as a changed pixel or outlier. On the other hand, if a pixel is placed 126 inside this hyper-sphere, it will be a no-changed class. This process is repeated for all classes in both 127 optical and radar images until all pixels in post-event image are classified and final change map is 128 produced [13].

129 In the final step, the produced change map from optical and radar images were fused together 130 using decision based fusion method such as voting strategies. These strategies can be applied to a 131 multiple classifier system assuming that each classifier gives a single class label as an output. There 132 are a number of approaches to combination of such uncertain information units in order to obtain the 133 best final decision. However, they all lead to the generalised voting definition. In this paper enhanced 134 majority voting method was used for fusing the change maps obtained from optical and radar 135 imageries. In simple majority voting method the final change and no-change classes are chosen when 136 all SVDD classifiers produce the same output. But in our proposed enhanced majority voting method, 137 in the areas that SVDD classifiers produce the different output, the spectral similarity measure 138 between multitempoarl radar and optical imageries were calculated. If this criteria for each pixel was 139 lower than predefined threshold, the corresponding pixels assign to change class and vise versa.

140 3. Results and Discussion

141 In order to analyze the accuracy of the proposed decision fusion based CD method, the test data 142 have been extracted from the optical images and google earth high resolution images by visually 143 comparing the multi-temporal images. These samples are selected so that they spread over the entire 144 area that the effects of sun angle and topography should be carefully considered in the analysis. Two 145 criteria, i.e. kappa coefficient of agreement and Overall Accuracy (O.A.) extracted from the confusion

- 146 matrix, were used for quantitative accuracy analysis of the results. Figure 3 show the change maps
- 147 obtained from proposed object-based CD method for IKONOS and Radarsat-2 imageries from
- 148 Sendai, Japan. The blue color indicates the change class.

The results show that, when using optical or radar imageries separately, leads to increase the false alarm rate in the change maps. In this case, flooded areas have not been fully identified, due to the inability of optical data to separate flooded areas from other areas. Using only radar data to detect flooded areas, due to the complexity of the region and the proximity of the change classes and the limitation of input information to the proposed CD algorithm, leads to the inability to detect all flooded areas as well as the misdiagnosis of flooded areas in some agricultural areas and bare land.

159 As can be seen in Figure 3 (c), the noise level in the change maps is very low and the proposed 160 fusion based CD algorithm is completely succeeded to separate flooded areas from other areas. It is 161 clear that by fusing the change maps obtained from optical and radar imageries, changed areas are 162 well extracted. The results got limited isolated pixels and they were less noisy in essence and better 163 results have been achieved. As well as the areas devastated by the earthquake and flood-affected 164 areas have been extracted with high accuracy. The exploitation of optical images together with radar 165 data allows to obtain a sharp boundary between change and no-change area, which is the basis of the 166 statistical approach to estimate the changes. Indeed, an accurate knowledge of the homogeneous 167 regions given by the joint segmentation allows a better exploitation of the entire available information 168 in pattern changes detection phase. The accuracy analysis of proposed decision fusion based CD 169 method for Sendai are presented in Table 2.

170

Table 2. The accuracy analysis of proposed CD method on Sendai case study.

A an Cristoria -		Tsunami, Sendai, Japa	n
Acc. Criteria	IKONOS	Radarsat-2	Fused change maps
Kappa	0.85	0.82	0.91

OA	93.61	92.60	96.37

For optical dataset, the accuracy analysis of proposed CD method showed that, the best results were obtained by using the RBF kernel function. For C-band HH intensity image of Radarsat-2 imagery, the best results were obtained by using the sigmoid kernel function. The fusion of change maps obtained from optical and radar imageries always provides better results than without completing the fusion phase.

Several conclusions can be deduced from the accuracy assessment of proposed CD method.
Preliminary results show that objects may be well suited to quantify changes when only one class of
the landscape features is the research emphasis. Therefore, in order to mapping the flooded areas,
using radar imageries are more appropriate choice. As high resolution optical imageries are a more
appropriate choice for extracting the earthquake-affected and flooded-affected in builtup and crop
lands areas. Therefore, it is suggested that in order to explore the environmental changes caused by
natural disasters, integration of optical and radar imageries to be used.

There are several reasons that account for the superiority of the object and fusion based CD approach. First, in this classification step, the proposed algorithm is able to extract the boundaries of changed (damage or flooded) areas from the adjacent no-changed areas. This allows the changed areas to be processed as homogeneous objects, instead of individual pixels. Second, by fusion of optical and radar data, the objects then have spectral, textural, spatial, contextual patterns and backscatter information that can be used to aid in the CD process. By integrating the change maps obtained from optical and radar imageries, a CD approach can detect the various land cover change

191 on the ground.

171

192 4. Conclusions

193 In this paper, a decision fusion based CD method at object-level is presented for change detection 194 from both optical and radar remotely sensed data over the 2011's Sendai, Japan. This proposed 195 method shows great flexibility for the problem of change detection by finding nonlinear solutions to 196 the problem. This method aims at exploiting both the high information content available with the 197 radar imageries and the high level of spectral information available even in a multiband optical 198 image. The proposed method is largely automated and was small influenced by some of the errors 199 issued by the classification process. In addition, all the change detection analyses are in object-level 200 and therefore the obtained change maps have lower level of noise and the boundary between the 201 change and no-change classes have high contrast.

202 Experimental results showed that, the proposed CD approach leads to an acceptable level of 203 accuracy for both optical and radar imageries. The results confirmed the fundamental role and 204 potential of using both optical and radar data for natural hazard damage detection applications. The 205 microwave signals have high sensitivity to water content of wetland and flooded areas which 206 increase the intensity of the backscatter signal. Consequently, radar sensors have high potential in 207 detecting environmental changes during natural disasters with adverse weather conditions. In future 208 research, efforts will be on the integration of various remote sensing sensor types using information 209 level and feature level methods for multiple change detetcion. Thus more accurate change map and 210 complementary information is achievable from this kind of high level fusion framework in natural

- 211 hazard damage detection application.
- 212 Acknowledgments: The authors would like to thank the Digital Globe Foundation for IKONOS images and
- MacDonald, Dettwiler and Associates Ltd. Geospatial Service for providing the Radarsat-2 images of Sendai
 City, Japan.
- 215 Author Contributions: Reza Shah-Hoseini, Abdolreza Safari and Saeid Homayouni conceived and designed the 216 experiments and wrote the paper; Reza Shah-Hoseini performed the experiments and analyzed the data.
- 217 **Conflicts of Interest:** The authors declare no conflict of interest.

218 References

- Römer, H.; Willroth, P.; Kaiser, G.; Vafeidis, A. T.; Ludwig, R.; Sterr, H.; Revilla Diez, J. Potential of remote
 sensing techniques for tsunami hazard and vulnerability analysis a case study from Phang-Nga
 province, Thailand. *Nat. Hazards Earth Syst. Sci.* 2012, *12*, 2103–2126, doi:10.5194/nhess-12-2103-2012.
- Taubenböck, H.; Post, J.; Roth, A.; Zosseder, K.; Strunz, G.; Dech, S. A conceptual vulnerability and risk
 framework as outline to identify capabilities of remote sensing. *Nat. Hazards Earth Syst. Sci.* 2008, *8*, 409–
 420.
- Volpi, M.; Tuia, D.; Bovolo, F.; Kanevski, M.; Bruzzone, L. Supervised change detection in VHR images
 using contextual information and support vector machines. *Int. J. Appl. Earth Obs. Geoinformation* 2013, 20,
 77–85, doi:10.1016/j.jag.2011.10.013.
- Zhigao, Y.; Qianqing, Q.; Qifeng, Z. Change Detection in High Spatial Resolution Images Based on
 Support Vector Machine. In; IEEE, 2006; pp. 225–228.
- Bovolo, F.; Camps-Valls, G.; Bruzzone, L. A support vector domain method for change detection in multitemporal images. *Pattern Recognit. Lett.* 2010, *31*, 1148–1154, doi:10.1016/j.patrec.2009.07.002.
- Inglada, J.; Mercier, G. A new statistical similarity measure for change detection in multitemporal SAR
 images and its extension to multiscale change analysis. *Geosci. Remote Sens. IEEE Trans. On* 2007, 45, 1432–
 1445.
- Dalla Mura, M.; Benediktsson, J. A.; Bovolo, F.; Bruzzone, L. An Unsupervised Technique Based on
 Morphological Filters for Change Detection in Very High Resolution Images. *IEEE Geosci. Remote Sens. Lett.* 2008, *5*, 433–437, doi:10.1109/LGRS.2008.917726.
- Bovolo, F. A Multilevel Parcel-Based Approach to Change Detection in Very High Resolution
 Multitemporal Images. *IEEE Geosci. Remote Sens. Lett.* 2009, *6*, 33–37, doi:10.1109/LGRS.2008.2007429.
- Pacifici, F.; Kanevski, M.; Emery, W. J. Classification of very high spatial resolution imagery using
 mathematical morphology and support vector machines. *Geosci. Remote Sens. IEEE Trans. On* 2009, 47,
 3866–3879.
- Pacifici, F.; Emery, W. J. Pulse coupled neural networks for automatic urban change detection at very high
 spatial resolution. In *Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications*;
 Springer, 2009; pp. 929–942.
- Stramondo, S. The Tohoku–Oki earthquake: A summary of scientific outcomes from remote sensing.
 Geosci. Remote Sens. Lett. IEEE 2013, 10, 895–897.
- Xiong, Y.; Quek, F. Automatic Aerial Image RegistrationWithout Correspondence. In *Computer Vision Systems, 2006 ICVS'06. IEEE International Conference on*; IEEE: Manhattan, New York City, USA, 2006; pp.
 250 25–25.
- Shah-Hosseini, R.; Safari, A.; Homayouni, S. Natural hazard damage detection based on object-level
 support vector data description of optical and SAR Earth observations. *Int. J. Remote Sens.* 2017, *38*, 3356–
 3374.
- Shah-Hosseini, R.; Homayouni, S.; Safari, A. A Hybrid Kernel-Based Change Detection Method for
 Remotely Sensed Data in a Similarity Space. *Remote Sens.* 2015, *7*, 12829–12858.
- Shah-Hosseini, R.; Homayouni, S.; Safari, A. Environmental monitoring based on automatic change
 detection from remotely sensed data: kernel-based approach. *J. Appl. Remote Sens.* 2015, *9*, 095992–095992.
 © 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed

under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).