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Abstract: In the coming decades, Sub-Saharan Africa faces challenges to sustainably increase food 14 
production while keeping pace with continued population growth. Conservation agriculture (CA) 15 
has been proposed to enhance soil health and productivity to respond to this situation. To increase 16 
maize yields, the main staple food in SSA, the selection of suitable genotypes has been explored 17 
using remote sensing tools. They may play a fundamental role towards overcoming the limitations 18 
of data collection and processing in large scale phenotyping studies. We present the result of a study 19 
where Red-Green-Blue and multispectral indexes were evaluated for assessing maize performance 20 
under conventional ploughing (CP) and CA practices. The measurements were conducted on 21 
seedlings at ground level and from an unmanned aerial vehicle platform. Most indexes were 22 
significantly affected by tillage conditions increasing their values from CP to CA. Indexes derived 23 
from the RGB-images related to canopy greenness performed better at assessing yield differences, 24 
potentially due to the greater resolution of the RGB compared with the multispectral data, although 25 
this performance was more precise for CP than CA. The correlations of the multispectral indexes 26 
with yield were improved by applying a soil-mask derived from a NDVI threshold.  27 
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 29 

1. Introduction 30 

Traditional practices of land preparation involve soil tillage through moldboard ploughing, to 31 
soften the seedbed, to ensure uniform germination, remove weed plants and to release soil nutrients 32 
through mineralization and oxidation. However, this mechanical disturbance is leading to a decline 33 
in organic matter, an increase of the loss of water by runoff, and finally to soil erosion [1]. Over the 34 
next century, Sub-Saharan Africa (SSA) is expected to be particularly vulnerable due to the range of 35 
projected impacts: e.g. multiple stresses and low adaptive capacity of current cropping systems as 36 
well as population increase [2]. Maize (Zea mays L.) is the principal staple food crop in large parts of 37 
SSA and is usually grown in small-holder farming systems under rainfed conditions. Limited 38 
availability of inputs is a leading factor contributing to low yields that in turn are not able to keep 39 
pace with the food demand [3]. Hence, one of the most effective pathways to adaptation is to focus 40 
in breeding new varieties but also in changing crop management [4]. In light of soil degradation, 41 
conservation agriculture (CA) practices have been proposed as an alternative to tillage-based 42 
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agriculture in SSA as a pragmatic solution to increase the production while conserving the natural 43 
resource base [5]. CA is a set of core principles, including minimum soil disturbance, permanent soil 44 
cover, diversified crop rotations supported by integrated soil, crop and water management, aimed at 45 
reducing and/or reverting many negative effects of conventional farming practices [6]. However, 46 
most crop cultivars currently grown under CA have been developed under conventional or full 47 
tillage conditions and it is likely that relevant genetic adaptations to CA conditions may have been 48 
removed during previous breeding efforts. Specialized sensors have become an important 49 
component for crop monitoring, particularly to improve precision, efficiency and throughput in 50 
phenotyping [7]. Remote sensing indexes have largely demonstrated their various applications in 51 
agriculture, including yield prediction, stress detection and control of plant diseases under a wide 52 
range of growing and environmental conditions [8]. The classical approach has involved the use of 53 
multispectral data for the development of numerous vegetation indexes to assess biomass (e.g. 54 
Normalized Difference Vegetation Index, NDVI), water content (e.g. Water Band Index, WBI) or 55 
pigment composition (e.g. Modified Chlorophyll Absorption Ratio Index, MCARI) in yield studies. 56 
At present, the use of information derived from RGB images (using red, green and blue color bands) 57 
acquired with conventional digital cameras represents a low-cost alternative. Moreover, recent 58 
technological advances have led the incorporation of these sensors into aerial based platforms, 59 
enabling the simultaneous characterization of a larger number of plots, which may help to minimize 60 
the effect of changing environmental conditions during critical sampling moments [7].  61 

The aim of the present study was to evaluate the efficiency of a set of remote sensing indexes in 62 
assessing the yield differences of different maize hybrids at early growth stages under conventionally 63 
ploughed (CP) and zero-tillage (CA) conditions. Different categories of sensors were tested, including 64 
RGB cameras (placed on an aerial platform as well as at ground level), alongside multispectral and 65 
thermal cameras (both installed on the aerial platform) and an active sensor portable field 66 
spectrometer designed to measure the NDVI at ground level.  67 

2. Materials and methods  68 

2.1. Site description, plant material and experimental design 69 

The experiment was conducted at Domboshawa Training Centre (17º37’S, 31º10’E and 1560 70 
m.a.s.l.), situated at the north-east of Harare (Zimbabwe), during the 2015/2016 crop season. Seven 71 
maize drought tolerant commercial hybrids and one drought-sensitive commercial control variety 72 
were manually planted on December 14, 2015 in plots of 23 m2 (5 x 4.6 m) with four lines per plot. 73 
Two differential plot management regiments were applied to the field since 2009. One half was 74 
managed using no-tillage and the application of 2.5-3.0 Mg ha-1 of maize stover to all the plots. The 75 
other half was conventionally ploughed and without any residue management. 76 

2.2. Proximal (ground) and aerial data colleciton 77 

Proximal (ground) data was collected 45 days after sowing on January 28, 2016 when the hybrids 78 
reached the stage of 4 to 6 leaves. The Normalized Difference Vegetation Index (NDVI) was 79 
determined at ground level using a portable spectrometer (GreenSeeker handheld crop sensor, 80 
Trimble, USA), by passing the sensor over the middle of each plot at a constant height of 0.5 m above 81 
and perpendicular to the canopy. One RGB picture was taken per plot, holding the camera at 80 cm 82 
above the plant canopy in a zenithal plane and focusing near the center of each plot. The conventional 83 
digital camera used was an Olympus OM-D (Olympus, Tokyo, Japan), with a 16-megapixel (MP) 84 
image sensor size of 17.3 x 13.0 mm saved in JPEG format with a resolution of 4608 x 3072 pixels. As 85 
the plots were too big for a single photograph, three different images samples were taken of each 86 
central row. RGB images were subsequently analyzed using a version of the Breedpix 0.2 software 87 
adapted to JAVA8 and other RGB image analyses together integrated as a freely available plugin 88 
within FIJI; https://github.com/George-haddad/CIMMYT). This software enables the extraction of 89 
RGB vegetation indexes in relation to different color properties. Essentially, the indexes are based on 90 
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either the average color of the entire image, in diverse units related to its “greenness”, or on the 91 
fraction of pixels classified as green canopy relative to the total number of pixels in the image.  92 

Furthermore, aerial measurements were acquired during the same visit as the ground data using 93 
an unmanned aerial vehicle (UAV) (Mikrokopter OktoXL 6S12, Moormerland, Germany) flying at an 94 
altitude of 30 m. Two flights were performed, on one flight only the RGB digital camera was mounted 95 
and the other included both the multispectral and thermal cameras. The RGB aerial images were 96 
obtained using a Lumix GX7 (Panasonic, Osaka, Japan) digital mirrorless camera with an 16-MP 97 
image sensor of 17.3 x 13.0 mm using a 20mm lens and saved in JPEG format with a resolution of 98 
4592 x 3448 pixels. For the multispectral data, a camera covering wavelengths in the visible and near 99 
infrared regions of the spectrum was used (micro-MCA12 with a dedicated Incident Light Sensor 100 
(ILS), Tetracam Inc., Chatsworth, CA, US). The camera consists of twelve independent image sensors 101 
and filters, with one sensor dedicated to calibration (ILS) that includes 11 micro filters corresponding 102 
to the exact wavelengths of the 11 downwards looking full image sensors. It captures 15.6-MP of 103 
image data as 12 x 1.3-MP images. The multispectral images acquired were aligned and calibrated to 104 
reflectance using PixelWrench II version 1.2.2.2. To obtain an accurate orthomosaic of the pre-105 
processed aerial images from each sensor, a 3D reconstruction was produced using Agisoft 106 
PhotoScan Professional. A total of 30 overlapped images were needed for each orthomosaic. Then, 107 
the procedure of cropping the plots was done using the open source image analysis platform FIJI (Fiji 108 
is Just ImageJ; http://fiji.sc/Fiji), where regions of interest were exported, taking care that exactly the 109 
same ground area was segmented for each plot across all treatments. For the formulation of the 110 
different multispectral indexes, we developed a customized FIJI macro code for the calculation of the 111 
multispectral indexes through two different approaches: at the whole plot level and on vegetation 112 
only by applying an NDVI mask of values of 0.4-1 to remove non vegetation pixels (Figure 1).  113 

 114 

 115 

Figure 1. Example of the vegetation area indentification by the NDVI threshold for the soil mask. 116 

3. Results and Discussion 117 

3.1. Implications of growing conditions on yield  118 

CA practices have been proposed as potential systems to increase crop yield, [1,9]. As can be 119 
seen in our results, grain yield was significantly greater under CA conditions (P < 0.0001), by almost 120 
20% relative to the CP. Since crop management has led to a considerable increase in yield, changes in 121 
genotype may be an option to make use of the enhanced yield potential provided by this 122 
environmental factor. Crops have been grown on conventional tillage for many years and genes 123 
governing the adaptation to CA either have been lost over time through untargeted selection or have 124 
become redundant [10]. However, the varieties used in this experiment only showed significant 125 
differences in yield under CA (P < 0.001), not under CP (P < 0.147). This may suggest the existence of 126 
some traits linked to tillage with a direct effect on improving yield. Herrera et al. (2013) [11] conclude 127 
that traits associated with emergence (early vigor) and resistance to diseases may increase genotype 128 
performance under CA. Thus, these results reinforce the need to further evaluate genotypic 129 
performance of varieties developed and selected in CP and test them under no-tillage conditions. 130 

3.2. Comparative performance of the vegetation indexes at determining differences in grain yield  131 

http://fiji.sc/Fiji
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RGB imaging and processing have become a major tool for phenotyping, and its ability to 132 
determine plant performance in terms of biomass and yield has been demonstrated again in this 133 
study. The indexes that performed better in assessing differences in yield were the ones more related 134 
to canopy greenness, such as a* or GGA (Figure  2). Therefore, elevated values of these indexes, 135 
driven by higher biomass levels, help to anticipate higher yields even at early growing stages [12]. 136 
Just like RGB, the multispectral indexes that are more sensitive to the green biomass (e.g. NDVI) and 137 
its reformulations as the SAVI, OSAVI and RDVI, were the best correlated with GY (Figure 2). Those 138 
indexes contain information from the red reflectance region [13–15], which increases with a reduction 139 
of the biomass density, making them ideal for identifying differences in vigor at early growing stages. 140 

 141 

 142 

Figure 2. Relationship between grain yield with the RGB indexes a* and GGA measured at ground 143 
level and the multispectral indexes SAVI and OSAVI for both CA and CP conditions.  144 

Although significant results obtained, these indexes did not perform equally in assessing yield 145 
differences within the different tillage growing conditions. The strengths of the indexes (both RGB 146 
and multispectral) correlations against yield, was much lower in CA compared with CP. The reason 147 
for this is assumed to be the added noise derived from the crop residue soil coverage. According to 148 
the FAO definition, the soil surface has to be covered at least by 30% to qualify as CA [16], which may 149 
have influenced remote sensing readings under CA. Due to this fundamental difference between CA 150 
and CP, it is difficult to segregate between biomass from the plant and residue cover. The application 151 
of an NDVI mask on the multispectral images effectively reduced background reflectance and 152 
increased their correlations statistically although the improvements were minor. Even having a 153 
distinct color, the CA background influenced the images mildly and supported the assessment of 154 
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vegetation area, particularly in RGB images that are based on the portion of green pixels of the image. 155 
Meanwhile, the use of the near-infrared (NIR) region by some spectral indexes, which greatly 156 
decreases its reflectance over soil, helps to increase the sensibility to the canopy cover. Despite these 157 
appreciations, the RGB based indexes GA and GGA outperformed NDVI and the rest of indexes at 158 
predicting GY under CA conditions. The far higher resolution of the RGB compared with the 159 
multispectral images may be the critical factor here when working from an aerial platform [12,17]. 160 

 161 

 162 

Figure 3. Relationship between grain yield with the NDVI, measured with the GreenSeeker (GS) and 163 
calculated from the aerial images, with (Veg) and without (Plot) the application of the soil mask. 164 

4. Conclusions  165 

CA management practices had a positive effect on increasing yields as compared to CP system. 166 
These results may help support the adoption of CA to combat declining yields that affect SSA 167 
agriculture. Henceforth, in order to fully exploit the yield potential, future efforts should focus on the 168 
study of the impact of the genotype selection for a particular management system (e.g. Genotype x 169 
Environment x Management interaction). The main point of field phenotyping is to understand the 170 
genotypic responses and dissect that traits associated with a better performance under CA as a 171 
management system. Thus, further work is required before breeding programs invest resources into 172 
a whole new management system. The use of remote sensing technologies, as presented here, would 173 
be increasingly useful for large-scale phenotyping studies. The results suggest, even at early crop 174 
growth stages, that the different RGB and multispectral indexes have the potential to effectively 175 
assess yield differences under CA conditions, even if their performance is lower than under CP 176 
conditions. This is assumed to be mainly due to residue cover which affect the reading; however, 177 
applying a soil mask to the images could help in overcoming this technical problem. Nevertheless, 178 
the performance of the RGB indexes in predicting yield was less affected by tillage conditions than 179 
the multispectral indexes. The indexes that best correlated with yield were mostly related with the 180 
greenness of the canopy vegetation, as the RGB indexes GA and a*, and the multispectral indexes 181 
NDVI and RDVI. Finally, the platform proximity effect on the image resolution did not have a 182 
negative impact on the performance of the indexes, reinforcing the usefulness of UAV and its 183 
associated image processing for high throughput plant phenotyping studies under field conditions.  184 
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Abbreviations 194 
SSA: Sub-Saharan Africa; RGB: Red-Blue-Green; CA: conservation agriculture; CP, conventional ploughed; 195 
NDVI: Normalized Difference Vegetation Index; UAV: unmanned aerial vehicle; GY: grain yield; HIS: Hue-196 
Intensity-Saturation; GA: Green Area; GGA: Crop Senescense Index; SCI: Greener Area; m.a.s.l.: meters above 197 
sea level; SAVI: Soil Adjusted Vegetation Index; MCARI: Modified Chlorophyll Absorption Ratio Index; WBI: 198 
Water Band Index; RDVI: Renormalized Difference Vegetation Index; OSAVI: Optimized Soil-Adjusted 199 
Vegetation Index; NIR: near-infrared. 200 
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