
 

              

The 1st International Electronic Conference on Crystals (IECC 2018), 21–31May2018;  

Sciforum Electronic Conference Series, Vol. 1, 2018 

Conference Proceedings Paper 

Quasicrystal Model as Framework for an Order to 

Disorder Transitions in 2D Systems 

Nadezhda L. Cherkas 1 and Sergey L. Cherkas 2,* 

1 Military Academy of the Republic of Belarus; n_cherkas@mail.ru 
2 Institute for Nuclear Problems, Belarus State University; cherkas@inp.bsu.by 

* Correspondence: cherkas@inp.bsu.by; Tel.: +375-17-226-47-39 

Abstract: An order to disorder transitions are important for 2D objects such as oxide films with 

cellular porous structure, honeycomb, graphene, Bénard cells in liquid and artificial systems 

consisting of colloid particles on a plane. For instance, solid films of the porous alumina represent 

almost regular quasicrystal structure. We show that in this case the radial distribution function is 

well described by the quasicrystal model, i.e. the smeared hexagonal lattice of the two dimensional 

ideal crystal with inserting some amount of defects into the lattice. Another example is a system of 

the hard disks in a plane which illustrates the order to disorder transitions. It is shown, that the 

coincidence with the distribution function, obtained by the solution of the Percus-Yevick equation 

is achieved by the smoothing of the square lattice and injecting the defects of the vacancy type into 

it. However, better approximation is reached when the lattice is a result of a mixture of the 

smoothened square and hexagonal lattices. Impurity of the hexagonal lattice is considerable at the 

short distances. Dependences of the lattices constants, smoothing widths and impurity on the 

filling parameter are found. Transition to the order looks as an increasing of the hexagonal lattice 

contribution and decreasing of smearing. 

Keywords: order to disorder transitions; 2D objects; radial distribution function; quasicrystal 

model; wavelet; porous aluminium oxide; hard disks in a plane 

 

1. Introduction 

It is well known that for particles on a plane interacting via a certain potential the existence of 

crystal, i.e., a system with periodicity, is impossible at nonzero temperature [1–4]. However there 

exist number of 2D objects in nature which exhibit crystalline like ordering. Usually these objects 

have non perfect crystalline structure and a question arises about transition from order to disorder. 

It is noteworthy that the order–disorder transition was experimentally studied from the general 

point of view in [5], where the destruction of a graphene layer by the electron beam was analyzed. A 

continuous transition from the crystalline state to the glassy state occurred as a result of irradiation. 

At the initial stage of irradiation, individual defects appear in the lattice. Then, the glassy 

(disordered) regions surrounding crystallites (perfectly oriented regions) emerge. In the disordered 

regions, the destruction of the order initially manifested itself of pentagonal and tetragonal cells 

instead of the hexagonal ones. The area occupied by crystallites decreases with an increase in the 

irradiation dose. 

As it was believed in [5], experiment confirms the validity both of the two competing theories of 

the order–disorder transition. They involve, on the one hand, the theory of crystallites [6] (according 

to which a amorphous substance incorporates crystal-like agglomerates linked by disordered 

regions) and, on the other hand, the theory of random networks (see review [7]), which assumes that 

the order is destroyed throughout the entire volume of a substance, so that the crystal lattice 



The 1st International Electronic Conference on Crystals (IECC 2018), 21–31 May 2018;  

Sciforum Electronic Conference Series, Vol. 1, 2018 

  

2 
 

transforms into random chains of atoms due to the distortion and break of some bonds. Thus, it 

follows from the experiment [5] that single defects are formed at the initial stages. Then the theory of 

crystallites proves to be valid; further, the theory of random networks starts to work. In this study 

we propose to take into consideration two mechanisms in order to simulate the radial distribution 

function of 2D systems. The first implies the formation of vacancy-type defects (i.e., the absence of 

atoms in some lattice sites), when the crystal lattice structure is retained. The second mechanism 

corresponds to the destruction of the crystal lattice and is implemented via peak broadening in the 

structure factor and limitation of the peak height at large wave numbers. The method of crystal 

lattice smearing proposed in [8] was used to construct an empirical radial distribution function. This 

method was applied to describe the structure of some simple liquids [9–15]. A similar method of 

smearing of coordination circles was used to describe artificial 2D crystals [16,17]. Here we consider 

a slightly different method consisting in the random shifting of the crystal nodes. 

2. Radial Distribution Function for Porous Aluminum Oxide Layer 

Oxide films with cellular porous structure are formed upon the electrochemical oxidation 

(anodiza- tion) of aluminum and many aluminum alloys in solutions of various acids. The film 

thickness may be as large as several hundreds of micrometers, while the pore radius size is several 

tens of nanometers. Such films have been studied for more than 50 years. They are widely applied as 

anticorrosion, wear-resistant, electro-insulating, and decorative coatings in microelectronic and 

optical devices, membranes, and sensors. Under a combination of certain conditions, including acid 

concentration and type, a film can be grown as an ordered array of cylindrical pores similar to a 2D 

periodic lattice [18–20]. Various theories describing the ordered structure of pores in aluminum 

oxide fabricated by anodization have been proposed [21,22]. However, presently there is no 

complete understanding of the regularities of ordered structure formation; hence, the radial distri- 

bution function of pores cannot be calculated theoretically. At the same time, the knowledge of the 

radial distribution function is necessary for optical calculations. For example, the effective refractive 

index of a medium consisting of porous aluminum oxide depends strongly on the radial distribution 

function [23]. The imaginary part of the effective refractive index is particularly sensitive to the form 

of the radial distribution function. As for the experimental determination of the radial distribution 

function using an electron microscope, its accuracy is limited by the finite sizes of a sample [24]. 

Thus, one needs semi-empirical models to describe the radial distribution function of pores in 

porous aluminum oxide. It is reasonable to suggest that the ordered structure of porous aluminum 

oxide is something intermediate between the 2D crystal and amorphous substance. Therefore, it is 

meaningful to study porous aluminum oxide from the viewpoint of general principles of the 

order–disorder transition [25,26].  

 
(a) 

 
(b) 

Figure 1. (a) Photograph of the sample of porous aluminumoxide layer from Ref. [8]. Circles around 

pore centers are plotted; (b) Array of pore centers obtained by a parallel translation of the pore 



The 1st International Electronic Conference on Crystals (IECC 2018), 21–31 May 2018;  

Sciforum Electronic Conference Series, Vol. 1, 2018 

  

3 
 

centers in the initial array along the coordinate axes and the diagonals of the  sample. The region 

containing pore centers in the starting sample is selected by a rectangle. 

Let us first analyze a real sample of porous aluminum oxide in order to understand the form of 

the radial distribution function that should be sought after. In practice, there is generally a 

photograph of the sample, which can be analyzed by statistical methods [24]. In this study, we used 

the electron microscopy image obtained in [27] and shown in Figure 1 (a). There are computer 

programs for determining the centers of cylindrical holes [24], which analyze the contrast of pixels. 

However, we plotted the pore centers manually. The average distance between pores in the sample 

was on the order of 100 nm [27]. To avoid edge effects and, at the same time, to have an opportunity 

to calculate the radial correlation function at somewhat larger distances, we increased the sample 

area by parallel translations along the coordinate axes and diagonals (Figure 2). Although this 

increase in the area gave rise to a certain error, it allowed increasing the distance at which the 

correlation function can be calculated. Then, using a computer program, we counted the number of 

pores between the circles of radii   and d   (including the pores of the extended sample) in 

the neighborhood of each selected pore of the initial sample. Such calculation was performed for 

each pore of the initial sample, and then the average value was found. A binary distribution function 

of the pore density distribution was calculated by the formula  

2 2
( )

1( )

N N
g
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 (1) 

here N  is the number of pores in the region between the circles of radii   and ,d   

whereas N  is the number of pores in the sample. The correction factor /( 1)N N   in (1) takes into 

account the fact that the selected pore cannot be situated within its environment. Radial distribution 

function ( )W   related to the function ( )g   by the expression 0( ) ( ) /W g n   is usually used, 

where 0n  is the average surface density of pores in the sample. Thus, the calculation of the radial 

distribution function is similar to the calculation in the Monte Carlo method, except for the fact that 

the sample in the Monte Carlo method is generated while the method at hand deals with an 

experimental sample. As a result, the radial distribution function was obtained. However, the 

statistical uncertainty and the error due to edge effects restrict the direct use of this function for 

optical calculations, since they give rise to errors in the calculation of integrals. At the same time, this 

accuracy is quite sufficient to construct an empirical distribution function by comparison with the 

experimental one. A further objective of our study was to derive a smooth empirical distribution 

function, which could be used in optical calculations. A starting point of our approach is the binary 

distribution function of particles for an ideal 2D crystal with a certain hexagonal lattice shown in Fig. 

2(a). The crystal structure is described, e.g., in [16,25,26]. The two-particle distribution function g(r) 

is a sum of the Dirac delta-function terms:  

(2)( ) ( ),i
i

g  ρ ρ ρ  (2) 

where (2) ( )ρ  represents a two-dimensional delta-function by Dirac, iρ is position vectors of 

particles in an ideal lattice. The particles are situated in the nods of the crystalline lattice. Summation 

in the formula (2) is performed over all the particles, except one, being in an origin of coordinates. As 

we have one particle on a cell an average density of the particles in an ideal crystal is easily 

calculated: 
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  where S  is an area of a crystal cell, a  is a lattice constant, i.e. 

diameter of a circle inscribed into the cell, as it is shown in Figure 2, m  is the number of edges of a 

cell.  
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Figure 2. The two-dimensional lattices: hexagonal (a), square (b), triangular (c). 

Correlation function is denoted as 0( ) ( ) .K g n ρ ρ    To proceed from an order (an ideal crystal) 

to disorder, we suggests formation of the defects of the vacancy type at the first stage. This means 

that there exists a probability of lacking of a particle in a node. As a result, the distribution function 

takes the form 
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where ( )g ρ  denotes a distribution function at this first stage, 0n  is the surface density of the 

particles in a sample and minD  is a distance at which it is known that the distribution function is 

apparently zeros. The formula (3) suggests that the correlation function ( )K ρ  of an ideal crystal is 

exponentially restricted at large  . Besides, it is taken into account, that ( )g ρ  should have the 

correct asymptotic at infinity, where it is equal to 0n , and should be equal to zero at minD  . At the 

second stage the spreading of a lattice by means of some integral transformation is carried out  
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where we have supposed  
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The integral transformation given by Eqns. (4), (5) maps a set of the integrable functions defined 

on the two-dimensional region minD  into itself. At minD   ( ) 0g ρ as in (3). Normalising factor 

( )   is equal to 

min min

1 1
2 2 2
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where 0 ( )I z  is a zero order modified Bessel function of the first kind. The above expression for

( )   implies that the action of the transformation (4) action to the function equal to some constant 

do not change it. As a result one comes to  

(a)                           (b)                           (c) 
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We do not consider an orientation order and a loss of it here and, an averaged 
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 over orientation of the vector ρ  (polar coordinates is used) is considered. 

Thus, all the directions are equivalent, and the pare distribution function depends only on distance

 . The radial distribution function 0( ) ( ) /W g n   is usually considered. As a result we come to 

the following formula  
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(7) 

where summation is performed not over the nods, but over coordination circles on which the nodes 

are situated and, iN  is the number of the nods laying on each i -th coordination circle.  

 

Figure 3. Radial distribution function of pores in porous aluminum oxide: experimental sample [8] 

(solid curve) and our calculation (dashed curve). 

The result of calculation is shown in Figure 3. The following parameters were used 
1/ 2( ) 0.0877( ) ,a   0 00.965 ,n n 

min 0.4 ,D a 0.2 / .a  One can see that there is a good agreement 

with the experimental radial distribution function obtained by counting the number of pores in the 

sample shown in Fig. 1(a). 

3. Hard Disks in a Plane  

Let us consider a quiet different system, namely, hard disk fluid. This system, on the one hand, 

attracts mathematicians and physicists with its simplicity, while, on the other hand, it is a test bed to 

explore transition from the order to the disorder, hard disc liquid to hexatic, the liquid to hexagonal 
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crystal and the liquid-to-maximally random jammed state [28-32]. The pair distribution function 

characterizes the important features of the system as compressibility and the equation of state 

[33,34]. The limiting case of a distribution function of hard disks under increasing of disk 

concentration is the hexagonal lattice, i.e. a two-dimensional crystal. It is reasonable, that at 

densities, close to maximum, the two-particle distribution function can be described in a frame of 

quasicrystal model by the smearing of a hexagonal lattice. At lower concentrations of particles the 

methods of integral equations [35], based on a decoupling of the Bogolubov chain of the equations, 

work well. In particular, the Percus-Yevick integral equation [29,35] is usually used. There question 

arises whether quasicrystal model works not only in the proximity to a crystal, but also at the 

medium concentrations? Below we consider the quasicrystal model at the range of medium 

concentration of disks.  

3.1. Comparison with the Solutions of the Percus-Yevick Equation 

Disk concentration is characterized by the packing fraction 2
0n R  , where R  is a disk 

radius. It is evident that the value of min 2D R , because the centers of the two hard disks are 

separated at least by this distance. Value of the lattice constant a  has to depend on  . The question 

arises which lattice should be smeared to obtain the correct pair distribution function? It turns out to 

be that the qualitative agreement with the solutions of the Percus-Yevick equation is reached if a 

square lattice is smeared. From the other hand it is obvious, that under increasing of the disk density 

we should come to a hexagonal lattice. To take this into account, we suggest the following model: 

2 2

( ) ( )(1 ) ( ) ,b b
squ gexW W e W e        (8) 

i.e. radial distribution function is superposition of the two terms obtained by the spreading of 

the  square and hexagonal lattices with the weight functions depending on distance. The functions 

( )squW   and ( )gexW   are calculated by Equation (7). Parameter ( )   determining spreading of the 

lattice depends on distance as ( )     that is the nodes situated further are smeared stronger. 

Results of the comparison with the solutions of the Percus-Yevick equation are shown in Figures. 4,5. 

It is should be noted, that the Percus-Yevick equation is not solved analytically for hard disks on 

planes thus, numerical methods therefore were used. It seems very interesting that the “tails” of the 

distribution function shown in Figures 4(b), 5(b) are modeled with high accuracy. Percus-Yevick 

equation stops to work at filling parameter about 0.6, which restricts present consideration. 

However, it is evident that the parameterization of the radial distribution function given by 

Equation (7) will be useful for higher disk concentrations, where phase transitions occur. Table 1 

contains all the parameters used in the calculations. For simplicity we consider that the parameters 

  and   determining smearing and an amount of defects-vacancies are same for both lattices, 

however constants of the lattices are taken different. As one could see spreading and number of 

defects decreases with the increasing of  , i.e. system tends from a disorder to an order. 

Table 1. Constants of lattices squa  and gexa  for modeling quasicrystal an allocation radial distribution 

function at various block coefficients  , and also other parameters figuring in formulas (6), (7). 

  /(2 )squa R  /(2 )gexa R  
1/ 2/(2 )R  2 R  

2(2 )b R  

0.62 1.04 1.1 0.158 0.027 0.4 

0.6 1.056 1.12 0.176 0.03 0.41 

0.55 1.095 1.14 0.192 0.1 0.45 

0.5 1.11 1.2 0.2 0.2 0.53 

0.45 1.112 1.3 0.209 0.5 0.7 

0.4 1.115 1.6 0.213 0.9 1.1 

0.35 1.117 2.1 0.224 1.4 0.75 

0.3 1.12 2.3 0.236 2 0.61 

1 All the quantities are dimensionless. 



The 1st International Electronic Conference on Crystals (IECC 2018), 21–31 May 2018;  

Sciforum Electronic Conference Series, Vol. 1, 2018 

  

7 
 

 
(a) 

 
(b) 

Figure 4. Radial distributions function for filling 0.62 , in a range {1,5}  (a), in a range 

{4,9}  (“a tail of the distribution function”) (b). Solid line is a solution of the Percus-Yevick 

equation, dashed line is the quasicrystal model. 

 
(a) 

 
(b) 

Figure 5. Radial distribution functions for filling 0.3  , in a range {1,3.5}   (a), in a range 

{2.5,5.0}   (“a tail of the distribution function”) (b). Solid line is a solution of the Percus-Yevick 

equation, dashed line is the quasicrystal model. . 

4. Conclusions  

Radial distribution function parameterization, based on the quasicrystall model is presented. 

This parameterization describes on the same footing as porous aluminum oxide, so as 2-D hard disk 

fluid. The quasicrystall model is based on the two effects: the first one is the vacancy type defects 

formation and the second one is the destroying of the crystal lattice by the smearing. The successes 

of this paramerization shows that even liquid of the hard disks contain features of a crystal. The 

model will serve as a tool for the description of the phase transitions in the 2-D fluids. From the other 

hand, it could be base for variational methods, because the parameters describing spreading, defects 

probability and lattice constants could be found by minimization of some functional [36].   

Conflicts of Interest: The authors declare no conflict of interest. 
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