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Abstract: This work aims at developing a machine learning-based model to detect cracks on 

concrete surfaces. Such model is intended to increase the level of automation on concrete 

infrastructure inspection when combined to unmanned aerial vehicles (UAV). The developed crack 

detection model relies on a deep learning convolutional neural network (CNN) image classification 

algorithm. Provided a relatively heterogeneous dataset, the use of deep learning enables the 

development of a concrete cracks detection system that can account for several conditions, e.g. 

different light, surface finish and humidity that a concrete surface might exhibit. These conditions 

are a limiting factor when working with computer vision systems based on conventional digital 

image processing methods. For this work, a dataset with 3500 images of concrete surfaces balanced 

between images with and without cracks was used. This dataset was divided into training and 

testing data at an 80/20 ratio. Since our dataset is rather small to enable a robust training of a 

complete deep learning model, a transfer-learning methodology was applied; in particular, the 

open-source model VGG16 was used as basis for the development of the model. The influence of 

the model’s parameters such as learning rate, number of nodes in the last fully connected layer and 

training dataset size were investigated. In each experiment, the model’s accuracy was recorded to 

identify the best result. For the dataset used in this work, the best experiment yielded a model with 

accuracy of 92.2%, showcasing the potential of using deep learning for concrete crack detection. 
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1. Introduction 

The maintenance and repair of large concrete infrastructure is rather costly, e.g. in Europe, €4-6 

billion are spent annually on maintenance of concrete infrastructure [1], let alone the associated costs 

that derive from traffic disruptions. It is reasonable to assume that the number of required 

inspections is expected to increase in the next few decades as concrete structures from the 60’s and 

70’s are presumably exceeding their expected service life.  

Solutions to monitor structures usually consists in embedded sensors to detect structural 

stiffness changes or corrosion initiation, e.g. vibrating wires [2] and optical fibres [3], to mention a 

few. The results from these are then associated with the presence of damages in concrete. However, 

such monitoring systems are common to modern infrastructure with long service life, i.e. much of 

the existing ageing concrete structures ought to be inspected in the traditional way, i.e. visual 

inspection followed by non-destructive testing. 

The presence of cracks in concrete has a major impact on the durability of reinforced concrete 

since they represent an easy path to aggressive agents to reach the reinforcement and trigger the 
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onset of corrosion. Thus, the detection of cracks is a key aspect in the damage assessment. The earlier 

a crack is detected, the better the chance to counter the side effects that derive from them. When 

performing damage assessment of infrastructures, a visual inspection provides an easy mean to 

detect damages, especially concrete cracks since they are apparent. However, for large 

infrastructures, visual inspections are rather time consuming and difficult, let alone the safety 

aspects when dealing with areas that are hard to reach, e.g. the lower part of slab decks in bridges 

[4]. To facilitate that, several companies are making use of unmanned aerial vehicles (UAV) for 

visual inspection of structures; especially because the UAV industry is providing reliable, easy to 

use, and affordable UAV that can help inspectors to improve their efficiency. 

Although commercial UAV are becoming easier to operate, it does not necessarily translate to 

an easier damage assessment workflow, i.e. from data collection to assessment. The biggest 

challenge relies on the latter, since UAV enables the collection of a larger dataset (at least a few 

orders to magnitude higher) than that from traditional visual inspection using cameras. Extracting 

meaningful insights from such extensive amount of data can be time consuming and cumbersome, 

so the time saved to collect data from a structure can easily be spent on data analysis. Hence, the 

provision of new paradigms for the assessment of concrete structures, e.g. to automatically identify 

concrete cracks, is a step towards improving UAV-based inspection workflow, thus providing a 

safer, low cost, and more objective analysis. 

Though the development of automated crack detection system is not entirely new, with a few 

deployments on UAV [5,6], but it still represents a challenging task that has been explored over the 

last decades. Most of the development relies on a combination or improvement of conventional 

digital image processing techniques such as thresholding, mathematical morphology, and edge 

detection, while utilising photometric (e.g. pixel value) and geometric assumptions (e.g continuity 

and local orientation) about properties of crack images to detect cracks - an extensive review can be 

found in [7]. While reliable in some applications, these methods are based on shallow abstractions 

(as in traditional rule-based artificial intelligent systems) with limited learning capabilities. Thus, 

they do not encompass the complexity of conditions that a concrete surface might exhibit, e.g. 

different light, surface finish, roughness, etc. In fact, such complexity makes it virtually impossible to 

hard code a rule-based method that is capable to account for all features in concrete surfaces. 

Deep learning algorithms, such as Convolutional Neural Networks (CNN), offers means to 

overcome the existing limitations in crack detection using image processing. Specifically, CNN have 

successfully been applied to image classification, while featuring a great level of abstraction 

(generalisation) and learning capabilities, a few examples can be found in [8]. These features are key 

to detect damages such as cracks in concrete in a robust and reliable manner; modern CNN-based 

automatic crack detection system under development for pavements are a proof to that [9].  

With this vision in mind, we focus on developing a CNN-based model to detect damages on 

concrete surfaces, thus providing new paradigms for the assessment of structures. At present, the 

developed system is limited to detecting concrete cracks using a binary classification method, i.e. the 

system identifies whether or not a crack is present on the concrete surface. The reference image 

dataset for development has 3500 images of concrete surfaces. 

The basis for CNN development relies on transfer-learning, i.e. we build upon a pre-trained 

open-source model VGG16 and use an experimental study to evaluate the influence of training 

parameters such as learning rate, number of neurons (or nodes) in the last fully connected layer, and 

training dataset size on the accuracy of the classification model. The obtained results provide an 

insight for researchers working with machine learning-based algorithms for crack detection, while 

the developed model represents the first-generation concrete crack detection tool that can be scaled 

to more complex models, including multi-label classification. 

2. Experimental program 

The experimental program comprises four phases: 1) create a reference classified image dataset, 

2) establish the reference artificial intelligent system, 3) implement transfer-learning approach, and 

4) run the training experiments. The details on each phase are presented as follows. 
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2.1 Image dataset 

The dataset comprised 851 pictures with size of 756 x 756 pixels. These pictures were taken from 

various concrete specimens after mechanical testing at the Concrete Centre at the Danish 

Technological Institute. The main idea was to collect images of concrete services at different surface 

appearance to increase the diversity of the dataset and, consequently, of the AI system that learns 

from this dataset. 

To augment the dataset without compromising the resolution, the pictures were sliced into 

images of 256 x 256 pixels – composing a final dataset with 3500 samples, which were then manually 

classified in two categories: concrete surfaces with and without cracks. The classified dataset is 

composed of 2336 and 1164 images with and without cracks, respectively. Examples are shown in 

Figure 1. The dataset is divided into a training and validation dataset at an 80/20 ratio. 

 

Figure 1. Examples of the images that compose the reference concrete image dataset. 

2.2 Network implementation 

As the reference dataset described in Section 2.1 is relatively small to enable a robust training of 

a complete deep learning model, a transfer-learning methodology was applied. Specifically, an 

open-source model, namely VGG16 [10], was used as basis for the development of the concrete crack 

identification model. The VGG16 is a CNN with a total of 16 layers, with 13 convolution layers and 3 

fully connected layers, as shown in Figure 2. This model was proposed in the ImageNet Large Scale 

Visual Recognition Challenge in 2014, and it was trained on the ImageNet Dataset that consists of 

millions of images divided into thousands of categories (none of which is related to concrete cracks). 

 

Figure 2. VGG16 architecture - the last layer was re-trained based on the transfer-learning approach. 

In our work, the training experiments were carried out using Google Cloud’s Computer 

environment. In this environment, a virtual machine with 8 vCPUs Intel Broadwell, 30GB memory, 

and 1x NVIDIA Tesla K80 was setup, allowing experimental runs with various values of learning 

rate, number of nodes, and training sample-size as described in the section 2.3. 

2.3 Training experiments 

The training experiments correspond to a factorial study of three variables, namely learning 

rate (lr), number of nodes in the fully connected layer (Nd) and training image dataset size (Sz).  
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Specifically, the ranges selected for each variable are lr = [0.01, 0.10, 1.00]; Nd = [32, 64, 128, 256] and 

Sz = [25%, 50%, 75%, 100%] of the original image dataset. As such, the training experiment of the 

crack detection network comprises size of lr × size of Nd × size of Sz = 48 model runs. For each run, the 

value of accuracy (Ac) in each epoch was recorded and used to identify the best model.  

It is important to bear in mind that a global optimisation of the parameters from the crack 

detection model is beyond the scope of this publication. Our primary focus is to showcase the 

potential of using deep learning with transfer-learning for the development of a crack detection 

model and identifying the effects of model parameters. Hence, each training experiment was 

performed only once, and the standard deviation of the results was not computed. 

3. Results and discussion 

The results for each run are listed in Figure 3, which indicates that a model with lr = 0.10, Nd = 32, 

and Sz = 100% yields an accuracy of 92.27%, that being the best result encountered in our study. 

 

Figure 3. Summary of the experiments results – model accuracy. 
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Figure 3 highlights that the image dataset size (Sz) has the strongest influence of the accuracy of 

the model. Such trend is expected since a larger dataset enables a greater number of iterations, 

contributing to a more accurate output. Also, the ascending trend when moving from Sz=25% to 

100% in Figure 3 suggests that an even larger training dataset has the potential to improve the 

network accuracy further, as there is steady increase in accuracy with no indication of convergence 

to a maximum accuracy. The evolution of the model’s accuracy in each epoch for models with 

lr = 0.10, Nr = [32, 256] and Sz = [25%, 50%, 75%, 100%] is depicted in Figure 4. 

  
(a) (b) 

Figure 4. Effect of the image dataset size (Sz) on the model accuracy: a) Nr = 32 and b) Nr = 256. 

Differently from the image dataset size, the effect of Nr and lr is rather neglectable. Such results 

are likely because the fully connected layer – i.e. the last layer of the network – relies on binary cross 

entropy, which is a relatively simple classification approach that can be computed with less complex 

networks. Furthermore, smaller Nr requires fewer parameters and, therefore, enables a likely faster 

optimal convergence of the network. Hence, even with Nr = 32 nodes, the neural network yielded 

great accuracy when compared to more complex models. Notice that a further reduction of Nr < 32 is 

likely to yield a model with prediction accuracy at the same level as the ones listed in Figure 3. 

The validation of the abovementioned assumption and the development of a comprehensive 

parametric study focused on optimising the network variables is currently under investigation and 

will be published elsewhere. Another aspect for a complementary study relates to the recognition of 

cracks at the pixel level to enable the creation of a map of cracks and computing the crack width on 

an evaluated surface. At present, our model is only capable of finding patch level cracks, e.g. for 

large images that are split into several blocks of 256 × 256 pixels, without considering the pixel level. 

Finally, our efforts towards developing a machine learning-based crack identification system 

have a goal to automate the damage assessment workflow of inspectors dealing with large 

infrastructure – increasing their productivity when the model is combined with UAV system. The 

results listed in this article are a step towards that. Notice, however, that while a fully-automated 

inspection seems far-fetched in a short-term scenario – especially because a much greater dataset of 

images comprising several damage types and a more complex network is required – the utilisation 

of machine learning-based tools to assist experts in concrete damage assessment tasks is likely to 

have a greater chance of success. The future of building and infrastructure inspection workflow 

envisioned by the authors is depicted in Figure 5. 

 

Figure 5. Future workflow of UAV and AI-assisted inspection of concrete infrastructure. 
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4. Conclusions 

This work introduced the implementation of a machine learning-based model to detect cracks 

on concrete surfaces for infrastructure inspection. Considering the analysis carried out in our 

experiments, the use of the transfer-learning approach proved suitable to train a model with a 

limited dataset size. The developed model is limited to a binary classification at a patch level of 

256×256 pixels – and complementary studies are being carried out to implement a model capable of 

identifying cracks at a pixel level. From a practical perspective, it is important to mention that, while 

AI constitutes a path towards automated inspection of concrete structures, the classification model 

mirrors the knowledge used during its training. Hence, human expertise is key in the development 

of an appropriate tool. Also, to enable AI models to evolve, a feedback system with corrections from 

an expert in the field of inspections is crucial. Thus, machine learning-based models are likely to be 

initially deployed as a tool that assists experts to provide a safer, faster and more productive 

inspection, creating new possibilities for increased effectiveness in infrastructure asset management 

by making unbiased, periodic structure monitoring and/or damage assessment feasible. 
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