

Ionic liquid gating of InAs nanowire-based FETs

Francesco Rossella

NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR Pisa, Italy

NEST, Scuola Normale Superiore & Istituto Nanoscienze-CNR

NEST

A public institute for higher education and research

SULLE NANDTECNOLOGIE

National Enterprise for nanoScience and nanoTechnology

CNRNANO 🔗

PER LA NANOSCIENZA ANNO - 2016

Beender a gewein konstendig och nen äpprinen alls ander nin dens in stadents Debugs II all Appeller Mills, des abenen publik den skrivet nindt scynnight (PCD) abenes Mills (PCD) 2015 e. (1) i annender Mills (PCD) abenes Mills (PCD) variante (PCD) (PCD) (PCD) (PCD) (PCD) (P

Process reasoner most and the new process of a laboration NET. It qualitative automotion is more processing to the the data property of the other processing to the data. Not exactly proceed out and the data of processing to the data of the processing of the process.

la modulita previete aul atta del Laiventurio NIST all'Indivitra unum laboratoriamentat

Materials: self-assembled NW heterostructures

- Materials: self-assembled NW heterostructures
- > Technology: field effect controlled NW-based devices

- Materials: self-assembled NW heterostructures
- > Technology: field effect controlled NW-based devices
- > Experiments: electrical & thermal transport, luminescence

- Materials: self-assembled NW heterostructures
- > Technology: field effect controlled NW-based devices
- > Experiments: electrical & thermal transport, luminescence
- Targets: fucntional devices: (Q)ICTs, energy harvesting

- Materials: self-assembled NW heterostructures
- Technology: field effect controlled NW-based devices
- Experiments: electrical & thermal transport, luminescence
- > Targets: fucntional devices: (Q)ICTs, energy harvesting
- Implementation:
 - I. hemogeneous nanowires
 - II. InAs/InP axial heterostructures
 - III. InAs/InP/GaSb radial heterostructures
 - IV. Hybrid metal/semiconductor axial heterostrictures

- Materials: self-assembled NW heterostructures
- Technology: field effect controlled NW-based devices
- > Experiments: electrical & thermal transport, luminescence
- Targets: fucntional devices: (Q)ICTs, energy harvesting
- ✤ Implementation:
 - I. homogeneous nanowires

- II. InAs/InP axial heterostructures
- III. InAs/InP/GaSb radial heterostructures
- IV. Hybrid metal/semiconductor axial heterostrictures

Lucia Sorba

- Chemical beam epitaxy
- III-V Semiconductors
- Self-assembled nanocrystals (bottom-up approach)

National Enterprise for nanoScience and nanoTechnology

Au catalyst

18-71 (5)910

 d_{avg} (nm)

150

0.1 nm

X

d(nm)

1.0 nm

0.5 nm

Au thin film

EBL-defined dots

Radial heterostructures: core-shell NWs

Tunable Esaki effect

Mirko

Rocci

- Thermoelectrics in coupled 1D systems
- 1D-1D Coulomb drag

S.Pezzini, ... and F.Rossella, in preparation M.Rocci, F.Rossella* *et al., Nano Lett.* **16**, 7950 (2016)

Axial heterostructures

GaAs/InAs

Sharp interface between 2 semiconductors

Axial heterostructures

GaAs/InAs InAs/InP

S. Roddaro

Sharp interface between 2 semiconductors

InP **barriers** few nm thick inside an InAs NW

Tunneling processes in 0D and 1D (NW-QDs)

Axial heterostructures

GaAs/InAs

s InAs/InP

M. Gemmi J. David

Piazza

Sharp interface between 2 semiconductors

InP **barriers** few nm thick inside an InAs NW

Metal/semiconductor junctions

- ➤ Tunneling processes in 0D and 1D (NW-QDs)
 ➤ Shottcky barriers → light emission, optoelectronics
- J. David, F. Rossella* et al, Nano Lett. 17, 2336 (2017)
- F. Rossella* et al, Nano Lett. 16, 5521 (2016)
- F. Rossella et al, Nat. Nanotech. 9, 997 (2014); F. Rossella et al, J. Phys. D: Appl. Phys. 47 394015 (2014)
- L. Romeo et al., Nano Lett. 12, 4490 (2012); S. Roddaro et al., Nano Lett. 11, 1695 (2011)

Homostructures: graded n-type doping

- > $n(x) \rightarrow \epsilon(x) \rightarrow tailoring dielectric response$
- Semiconductor → gate-tunable nano-plasmonics

National Enterprise for nanoScience and nanoTechnology

A.Arcangeli, F. Rossella* et al, Nano Lett. 16, 5688 (2016)

Ionic liquid gating of InAs nanowire-based FETs

V. Demontis, V. Zannier, D. Ercolani, L. Sorba, F. Beltram and F. Rossella S. Ono J. Lieb and B. Sacepe

NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Pisa (Italy) Central Research Institute of Electric Power Industry, Yokosuka, Kanagawa (Japan) Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Neel, Grenoble (France)

SUPPORTED NW devices: Seebeck & Power Factor

S.Roddaro, et al., Nano Research 2014

SUPPORTED NW devices: Seebeck & Power Factor

S.Roddaro, et al., Nano Research 2014

 $R(\mathbf{k}\Omega)^{20}$ 10 15 25 30 PISA

S.Roddaro, et al., Nano Research 2014

SUSPENDED NW devices: thermal conductivity

 $ZT = \frac{S^2 \sigma}{k_l + k_e} T$

SUSPENDED NW devices: thermal conductivity

Optical approach

All-electrical method: Current injection at freq ω Voltage probing at freq 3ω

Suspended NW devices: strategies for gating?

backgate, side gates

poor modulation of σ at temperatures of interest

15% *R* modulation within +/- 20V (combining BG and SG)

PISA

Ionic liquid gating

DFT

Hexafluorophosphate (coarse grain) + layered electrodes + porosity

Molecular dynamics diffusion coefficients

V. Tozzini

L. Bellucci

Many additional problems in simulations!

- ✓ realistic structure of the porosity (\rightarrow sponge builder)
- ✓ Size of the system
- The model of electrode must be polarizable

Tests to

- validate the model
- optimize the simulation parameters

Test with mechanically induced diffusion: anion has a larger diffusivity than the cation

Test with nanoporous charged polarizable electrodes

Electric Double Layer Transistors & Thermoelectrics

- Test-bed for confinement effects (DOS discretization) \rightarrow ZT, S² σ enhancement
- oxides (SrTiO3, ZnO, Cu2O) Thin films
 2D materials
 SWCNTs
 NWs ??

Ionic liquid gated InAs NW FET: realization

Ionic liquid gated InAs NW FET: realization

Ionic liquid gated InAs NW FET: realization

Ionic liquid gated InAs NW FET: realization

Ionic liquid gated InAs NW FET: realization

J. Lieb, ... and F.Rossella, submitted

Parameter space:

Temperature

Parameter space:

- Temperature
- dV_{LG}/dt (liquid gate voltage Sweep rate)

 $V_{\rm LG}\,({\rm V})$ 0 -1 -1 0 1 2.44 mV/s 2.2 $I_{\rm DS}(\mu {\rm A})$ 2.0 Parameter space: 1.8 300 K Temperature 2.4 240 K dV_{LG}/dt (liquid gate voltage $I_{\rm DS}(\mu {\rm A})$ 2.2 Sweep rate) 2.0 9 mV/s 2.4 235 K 2.3

T = 240 K $dV_{LG}/dt < 10 \text{ mV/s}$

 $V_{\rm LG}\,({\rm V})$

Ionic Liquid Gate vs back gate

LIQUID GATE

SCUOLA Normale Superiore

PISA

(Υ^{10⁻¹} (μΑ) (Yn) ^{10⁻¹} ^{SC} 10⁻² 0.0 $l_{
m LG}^{
m leak}$, T = 300 K $T = 240 \, {\rm K}$ -0.2 $V_{\rm DS} = +10 \ {\rm mV}$ $V_{\rm DS} = 4 \, \rm mV$ -1010⁻² 10^{-3} -2 -1 2 -20 -10 10 20 0 0 $V_{\rm LG}(\rm V)$ $V_{\rm BG}(V)$

SCUOLA

PISA

NORMALE

 $n \approx 5^* 10^{17} \text{ cm}^{-3}$ $\mu \approx 200 \text{ cm}^2/\text{Vs}$ $C_{BG} \approx 60 \text{ aF}$

PISA

Gate induced transition

Summary

The happy marriage btwn III-V NWs & ionic liquids

- control of hysteresis
- FET operation demonstrated
- Ionic liquid gate versus BG: no match!
- Onset of charge induced phase transition

Summary & Perspectives

The happy marriage btwn III-V NWs & ionic liquids

- control of hysteresis
- FET operation demonstrated
- Ionic liquid gate versus BG: no match!
- Onset of charge induced phase transition
- Suspended NW thermoelectrics
- Charge induced phase transition in 2D and 1D
- Ambipolar transport
- Dynamically controlled p-n junctions

Valeria Demontis

Domenic Prete

Valentina Zannier

Daniele Ercolani

Lucia Sorba

Fabio Beltram

Shimpei Ono

