Anticancer and antimicrobial activity of new C-28 guanidine-functionalized triterpenoic acid derivatives

Anna Spivak*, Rezeda Khalitova, Darya Nedopekina, Lilya Dzhemileva, Milyausha Yunusbaeva, Victor Odinokov, Vladimir D’yakonov and Usein Dzhemilev

Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, 141 Prospekt Oktyabrya, Ufa 450075, Russian Federation.

* Corresponding author: annaspivak.ink46@gmail.com
Anticancer and antimicrobial activity of new C-28 guanidine-functionalized triterpenoic acid derivatives

Graphical Abstract

Jurkat: IC$_{50}$ = 3.1 µM
Fibroblasts: IC$_{50}$ = 27 µM

Staphylococcus aureus: 0.5
Candida albicans: 8.0
Cryptococcus neoformans: < 0.25

Cytotoxicity (CC$_{50}$, µg/mL)
HEK 293: > 32
Abstract:

Novel betulinic, ursolic, and oleanolic acid derivatives, containing a guanidine moiety have been designed and synthesized in an attempt to develop potent antitumor, antibacterial and antifungal agents. Triterpenoic acids were converted into C-28-aminotriterpenoids in which polyamine moieties were bound with C-28 carboxylic group through an amide or ester bonds. These compounds served as precursors for the synthesis of novel guanidine-functionalized triterpenoic acids derivatives. The cytotoxicity was tested on five human tumor cell lines (Jurkat, K562, U937, HEK, and Hela) and compared with the tests on normal human fibroblasts. The antitumor activities of the most tested guanidine derivatives was lower than that of corresponding amines, but triterpenoids with the guanidine group were less toxic to human fibroblasts. The identified lead molecules with the highest antitumor characteristics were selected for extensive biological testing according to flow cytometry data, which showed that the antitumor activity of these compounds is caused by apoptotic processes and induction of cell cycle arrest in the S-phase. Most of the tested guanidine derivatives showed a good antibacterial effect against Gram-positive bacteria Staphylococcus aureus (MICs values 0.5-4.0 µg/mL) and expressed significant antifungal activity against Candida albicans (4.0 µg/mL) and Cryptococcus neoformans (0.25-4.0 µg/mL), higher than the standard fluconazole (8.0 µg/mL).

Keywords: triterpenoic acids, guanidine moiety, antitumor activity, antibacterial activity, antifungal activity
Triterpene acids (betulinic, ursolic, and oleanolic acids) are of interest for pharmacological research, as they exhibit a variety of biological activities including antimicrobial, antiparasitic, antitumor, and antiviral, in particular, anti-HIV, types of activity. Among these properties of triterpenoids, of special interest is their anticancer activity and the ability to trigger the mitochondrial apoptosis pathway in various types of human cancer cells. The useful pharmacological properties of triterpene acids are successfully combined with their acceptable systemic toxicity towards animals. However, the relatively low anticancer potential and high hydrophobicity, of these secondary metabolites markedly hamper their advancement as anticancer drug candidates.
Introduction

It has been shown that conversion of triterpene compounds to cationic derivatives such as quaternary ammonium, pyridinium or triphenylphosphonium salts may serve as an efficient approach to improving bioavailability and selectivity of their biological action.

Conjugation of betulinic acid with lipophilic triphenylphosphonium cation led to the dramatic enhancement of ability to trigger the mitochondrial apoptosis pathway in various types of cancer cells.

Dimethylaminopyridine derivatives of betulinic acid cause mitochondrial disruption and induce the permeability transition at cancer cells.

Dimethylaminopyridine derivatives of betulinic acid cause mitochondrial disruption and induce the permeability transition at cancer cells.

Introduction

We investigated antitumor and antimicrobial activities of novel cationic derivatives of ursolic, oleanolic and betulinic acids, containing guanidine groups which are readily protonated at a physiological pH level.

- The effect of introduction of the guanidine group into triterpenoid molecules has not been studied so far.
- The introduction of hydrophilic guanidine groups into hydrophobic triterpene acid molecules may enhance their transmembrane transport and physicochemical characteristics.
- The guanidine group is a common key unit in various natural and synthetic compounds demonstrating antimicrobial, antiviral, and antitumor activities.
- Guanidine derivatives can be accumulated in the mitochondria of tumor cells, thus destroying the mitochondrial potential and inhibiting the mitochondrial respiratory chain.

Examples of guanidines as fragments within drug molecules.

![Examples of guanidines as fragments within drug molecules.](image)

Results and discussion

The cytotoxic activity of triterpene acids (dihydrobetulinic, ursolic and oleanolic acids), guanidinium salts, and some of their precursors, primary amines were tested in vitro on five human tumor cell lines: Jurkat (T-lymphoblastic leukemia), K562 (chronic myeloid leukemia), U937 (histiocytic lymphoma), HEK 293 (embryonic kidney), and HeLa (cervical cancer). The possible cell toxicity was assessed against normal human fibroblasts. Most of the tested compounds showed moderate or significant activity as compared to triterpenoic acids.

![Dihydrobetulinic acid](image1)

J_{urkat}: IC₅₀ = 59 μM
Fibroblasts: IC₅₀ = 517 μM

![Ursolic acid](image2)

J_{urkat}: IC₅₀ = 23 μM
Fibroblasts: IC₅₀ = 324 μM

![Oleanolic acid](image3)

J_{urkat}: IC₅₀ = 271 μM
Fibroblasts: IC₅₀ = 694 μM
Results and discussion

Anticancer activities of novel C-28 guanidine-functionalized triterpene acid derivatives

Jurkat: IC\(_{50}\) = 7.7 µM
Fibroblasts: IC\(_{50}\) = 8.3 µM

Jurkat: IC\(_{50}\) = 3.3 µM
Fibroblasts: IC\(_{50}\) = 31 µM

Jurkat: IC\(_{50}\) = 3.1 µM
Fibroblasts: IC\(_{50}\) = 27 µM

Jurkat: IC\(_{50}\) = 16 µM
Fibroblasts: IC\(_{50}\) = 117 µM

Jurkat: IC\(_{50}\) = 3.8 µM
Fibroblasts: IC\(_{50}\) = 51 µM

Jurkat: IC\(_{50}\) = 7.6 µM
Fibroblasts: IC\(_{50}\) = 54 µM
Results and discussion

The identified lead compounds 15, 15c, 18c, and 20c, were evaluated for the possible apoptosis induction in Jurkat cells using Annexin V / 7-AAD staining. The highest percentage of late apoptosis (91.7%) was detected upon the addition of compound 15 (0.5 µM) to cells followed by 48 hour incubation. After treatment of Jurkat cells with compound 15c apoptotic cells population was 23.7% (7.2% and 16.5% of early and late apoptotic cells, respectively). Comparable results were obtained with the guanidine derivative of ursolic acid 18c (6.8% and 14.3% of early and late apoptotic cells, respectively). The apoptotic effect of the guanidine derivative of oleanolic acid 20c was much weaker. After 48 hours, the normal cell population was 78.4% and the apoptotic cell population was 15.5%.
Results and discussion

DNA flow cytometry was also used to analyze the cell cycle kinetics for Jurkat cells pre-incubated with compounds 15, 15c, 18c, and 20c (0.5 µM) for 48 hours. Simultaneously, the number of cells in the G0/G1 phase decreased, while the blockage of proliferation increased and the proliferation index decreased due to decreasing number of G2/M phase cells. These results may indicate that the cytotoxic activity of compounds 15 and 15c, 18c and 20c against T-cell leukemia cells is due to the ability of these compounds to induce cell cycle arrest particularly in the S-phase.
Results and discussion

Antibacterial activities of novel C-28 guanidine-functionalized triterpene acid derivatives

In addition to the anticancer activities C-28 amine- and guanidine- functionalized triterpene acid derivatives showed antimicrobial effect. Our compounds were screened on cultures of *Staphylococcus aureus*, *Escherichia coli*, *Klebsiella pneumoniae*, *Acinetobacter baumannii*, *Pseudomonas aeruginosa*, as well as two fungi, *Candida albicans* and *Cryptococcus neoformans*. Guanidine-functionalized betulinic acid and ursolic acid derivatives demonstrated antibacterial activity, showing MIC in the range of 0.5 – 4.0 µg/mL against gram-positive bacteria *S. aureus*.

Antibiotic standard – *Vancomycin* · HCl: MIC = 1 µg/mL
Results and discussion

Antifungal activities of novel C-28 guanidine-functionalized triterpene acid derivatives

These compounds displayed the excellent antifungal activity against *C. albicans* (MIC = 8 µg/mL) and *C. neoformans* with MIC values of 0.25 – 4.0 µg/mL.

CC₅₀ cytotoxicity against a human embryonic kidney cell line, HEK293

Antifungal standards:

Fluconazole: *C. albicans* MIC = 0.125 µg/mL
C. neoformans MIC = 8 µg/mL

C. albicans: MIC = 8 µg/mL
C. neoformans: MIC < 0.25 µg/mL
CC₅₀ > 32 µg/mL

C. albicans: MIC = 8 µg/mL
C. neoformans: MIC < 0.25 µg/mL
CC₅₀ = 18.39 µg/mL
Conclusions

- Here we describe the synthesis, cytotoxicity and apoptosis-inducing activities of novel pentacyclic lupane, ursane, and oleanane type triterpenoid derivatives containing guanidine groups. The introduction of hydrophilic guanidine groups into hydrophobic triterpene acid molecules may enhance their transmembrane transport and physicochemical characteristics.
- The antitumor activities of the most tested guanidine-containing triterpene acids was lower than that of corresponding amines, but triterpenoids with the guanidine moiety were less toxic to human fibroblasts.
- The mechanism of the antitumor action of the more active compounds was investigated by using flow cytometry analysis, which revealed that compounds can induce cell apoptosis and cell cycle arrest in the S-phase in Jurkat cells.
- Because guanidine-derivatives were the most active among the tested compounds, the guanidinyl substituent C-28 appears to be important for the antibacterial and antifungal activity of these compounds.
- The guanidine chain might be a pharmacophore involved in the antitumor and antimicrobial activities of these series of compounds.
Acknowledgments

This work was performed under financial support from the Russian Science Foundation (Grant 16-13-10051). The authors thank the Community for Antimicrobial Drug Discovery, University of Queensland, funded by the Wellcome Trust (UK) and The University of Queensland (Australia) for performing of antimicrobial screening against gram positive and negative bacteria as well as fungi.