

Sb₂S₃ thin films: effect of PEI polymer substrate on physical properties

Sameh Ben Ameur^{1,*}, and Hajer Guermazi¹

- ¹ Research Unit: Physics of insulators and semi insulator materials, Faculty of Science of Sfax, Road of Soukra Km 3.5, B.P: 1171 3000 Sfax, University of Sfax, Tunisia, hajer.guermazi@gmail.com
- * E-Mail: sameh.benameur@yahoo.fr;
- Tel.: +216-50-511-723

Abstract: The aim of this work is to highlight the substrate effects on physical properties of antimony trisulphide (Sb_2S_3) thin films grown by simple chemical bath deposition. Sb_2S_3 thin films were deposited on glass and flexible Polyetherimide (PEI) substrates using similar deposition conditions. X-ray diffraction results indicate that both Sb_2S_3 /glass and Sb_2S_3 /PEI thin films are polycrystalline with orthorhombic structure. It was found that their texture and structural parameters are strongly dependent on the substrate. In fact, Sb_2S_3 growth on polymer substrate leads to an enhancement in surface roughness (RMS = 33 nm for Sb_2S_3 /glass, and 116 nm for Sb_2S_3 /PEI) and superhydrophobic character. This makes Sb_2S_3 /PEI sought to be used in self-cleaning applications

Keywords: Sb₂S₃ thin films, PEI flexible substrate, Self-cleaning

1. Introduction

Sb₂S₃ is one of interesting metal chalcogenides. In fact, Sb₂S₃ thin films are widely used for various applications in the semiconductor industry for making infrared detectors, diodes, high-reflecting dielectric films, microwave devices, switching devices, absorber layer in different hetero-junction photovoltaic structures and photocatalysts [1]. This considerable attention is due to its suitable band gap, high absorption coefficient, relatively nontoxic and earth-abundant constituents, simple composition (binary compound), and long-term stability (a natural mineral: stibnite). The growth, structure, and properties of a deposited thin film depend significantly on a number of factors, such as the nature of the substrate, substrate 2. Results and Discussion

Fig. 1 shows the XRD patterns of the Sb₂S₃ thin films grown glass as well as on PEI substrates.

The XRD pattern of the Sb_2S_3/PEI sample showed broad band-related to the amorphous structure of the PEI polymer. The labeled peaks in XRD were compared to the standard JCPDS powder diffraction data set (78-1347). This analysis revealed that these samples are polycrystalline with orthorhombic structure. No temperature, deposition rate. As known, the physical properties of thin films are affected obviously by the process parameters such as the substrate nature [2]. Using thin films deposited on polymer flexible substrates received a great interest in progressing flexible electronic devices such as solar cell planer [3]. Flexibility and light weight are two great advantages to using plastic substrates [4].

In this work, PEI flexible polymer and glass substrates are employed for growth of Sb_2S_3 thin films by simple CBD technique. The effect of substrate nature on the physical properties was investigated. Our study was especially focused on the microstructure, surface morphology and hydrophobicity properties.

other peaks related to impurities are observed which proves the high purity of Sb_2S_3 binary phase. It is clear that the substrate nature affects significantly the general texture and notably the preferred orientation. Hence, the preferential growth orientation of the polycrystalline Sb_2S_3 thin films can be understood from the texture coefficient *TC* (*hkl*) calculation using the following relation:

$$TC_{(hkl)} = \frac{I_{(hkl)} / I_{0(hkl)}}{N^{-1} \sum I_{(hkl)} / I_{0(hkl)}}$$
(1)

where $I_{(hkl)}$ is the measured intensity for (hkl)diffracting plan, I_{0(hkl)} is the corresponding intensity for randomly oriented sample taken from the JCPDS card and N is the number of observed diffraction peaks. The variation of the texture coefficient of all Sb₂S₃ thin films is shown in insert Figure 1. The change in crystallite preferred orientation for (a) and (b) thin films can be explained by the difference between the morphology of substrate surface. Notably, the contact angle measurements of PEI and glass substrate show that the PEI substrate $(\Theta = 76^{\circ})$ is more hydrophobic than the glass one $(\Theta = 50^{\circ})$ (figure 2). The variation of the hydrophobicity is due to the difference in adhesion forces (Van Der Wall's forces) between water and the solid surfaces. Indeed, it is noted that the PEI substrate has the lowest adhesion work with higher adhesion force $(118,8 \ 10^{-3})$ N/m) compared to glass one (96, 3 10^{-3} N/m), the difference in both which is related to composition and morphology of substrate surfaces. The polymer PEI substrate inherently has a low surface energy, namely, a hydrophobic character that results in poor adhesion. Consequently, the grown samples show different preferential orientations due to the surface energy of the substrate [5].

The substrate nature affects also the microstructural parameters of Sb_2S_3 thin films such as the crystallite size and structural defects. Using Debye Scherrer's formula, the crystallite

sizes are found to be 138 nm and 63 nm for the Sb₂S₃/glass and Sb₂S₃/PEI, respectively. Also, the structural defects are computed for Sb₂S₃/glass and Sb₂S₃/PEI 7.2 10^{-3} nm⁻² and 0.2 10^{-3} nm⁻², respectively. We can assume that the films has the larger crystallite size has the lower structural defects.

Figure 3 displays 3D AFM images (10 μ m× 10 μ m) of Sb₂S₃/glass and Sb₂S₃/PEI thin films, along with the contact angle images.

The average RMS roughnesses are found to be 33 nm and 116 nm for Sb₂S₃/glass and Sb₂S₃/PEI, respectively. It is observed that using PEI substrate causes higher roughness than the glass substrate. Indeed, the surface of the polymer is more irregular than the glass surface causing, as a consequence, the different observed morphologies of Sb₂S₃ thin films. We can assume that the structural variations such as the texture and microstructural parameters reveal a significant variation in the morphology of thin films. The variation in the morphology causes a variation on contact angle measurement of Sb₂S₃ thin films. The static contact angles of Sb₂S₃/glass and Sb₂S₃/PEI films are found to be 66 ° and 162° respectively. As it is known the surface roughness is assumed to be among principal a factor which impinges surface wettability [6], which is in agreement with AFM observations. We can note that the Sb₂S₃/glass has a hydrophilic surface however the Sb₂S₃/PEI superhydrophobic has а one. This superhydrophobic character of Sb₂S₃/PEI surface thin films makes this material good candidate for self-cleaning surface devices.

Figure 1.XRD patterns:Sb₂S₃/PEI (a) and Sb₂S₃/glass (b)

Figure 2. Contact angle measurements of PEI and glass substrate

Figure 3. 3D AFM images and contact angle measurements of Sb₂S₃/PEI (a) and Sb₂S₃/glass (b)

Mol2Net-04, **2018**, BIOCHEMPHYS-01 (pages 1- x, *type of paper, doi: xxx-xxxx* http://sciforum.net/conference/mol2net-4

3. Materials and Methods

Antimony sulphide thin films were prepared on glass substrates and PEI polymer substrate by simple chemical bath deposition. The bath for Sb_2S_3 was prepared as follows: $SbCl_3$ was dissolved acetone, (1 M Na_2S_2O_3 aqueous solution was added. We used the deposition temperature of 60 °C for 35 min. More details were reported elsewhere [7]. The thickness of the films is determined by double weight method. Calculations for film thickness were found to be

600 nm. The crystal structure of Sb₂S₃ films was determined by X-ray diffractometer analysis X Pert PromPD with radiation (λ =1.54Å). The surface morphology and roughness of the samples were analyzed using atomic force microscopy(AFM).The wettability measurements have been made using a contact angle meter (Micro-Drop analysis DSA 100 M) at room temperature.

4. Conclusions

 Sb_2S_3 films were deposited on two types of substrate: glass and PEI flexible polymer by simple CBD technique with 600 nm of thickness. It was found that the substrate nature affect the growth of Sb_2S_3 notably the texture and the orientation. The microstructural parameters are also affected which influenced the morphologies Sb_2S_3 thin films. The grown process on different substrate is dependent on the chemical composition and the morphology of substrate surface. The contact angle measurement shows the poor adhesion of PEI substrate. The morphology of surface substrate affects the growth orientation, the texture and the microstructural parameters. The morphological properties and RMS values are substrate dependant. The Sb_2S_3 deposited on PEI shows a super hydrophobic surface which presents a good candidate for self-cleaning devices.

Acknowledgments

The authors would like to express their gratitude for the financial support from the Ministry of High Education and Scientific Research in Tunisia

References and Notes

- 1. S. Shaji, L.V. Garcia, S.L. Loredo, B. Krishnan, J.A. Aguilar Martinez, T.K. Das Roy, D.A. Avellaneda. Antimony sulfide thin films prepared by laser assisted chemical bath deposition, Appl. Surf. Sci 393 (2017) 369–376
- S. Lee, C. Yang, J. Park, The effect of the surface physical properties of polymer substrates on the adhesion and cracking of transparent conductive oxide (TCO) coatings, Surf. Coat. Technol. 207 (2012) 24–33
- 3. [2] J. Glenneberg, F. Andre, I. Bardenhagen, F. Langer, J. Schwenzel, R. Kun, A concept for direct deposition of thin film batteries on flexible polymer substrate, J. Power Sources, 324 (2016), 722-728
- S. Ben Ameur, A. Barhoumi, H. BelHadjltaief, R. Mimouni, B. Duponchel, G. Leroy, M. Amlouk, H. Guermazi, Physical investigations on undoped and Fluorine doped SnO₂ nanofilms on flexible substrate along with wettability and photocatalytic activity tests, Mater. Sci. Semicond. Process.61 (2017) 17–26
- Hayk Khachatryan, Sung-Nam Lee, Kyoung-Bo Kim, Han-Ki Kim, Moojin Kim, Al thin film: The effect of substrate type on Al film formation and morphology, J PHYS CHEM Sol 122 (2018) 109–117
- 6. H. Ji, G. Chen, J. Yang, J. Hu, H. Song, Y. Zhao, A simple approach to fabricate stable superhydrophobic glass surfaces, Appl. Surf. Sci. 266 (2013) 105–109.
- 7. H. Maghraoui-Meherzi, T. Ben Nasr, N. Kamoun, M. Dachraoui, Physical properties of chemically deposited Sb₂S₃ thin films, C. R. Chimie 14 (2011) 471–475.