

Halogenated 2,1,3benzoxadiazoles as potential fluorescent warheads for covalent protease inhibitors

Anastasiia Kuznetsova¹, Philipp Klein², Till Opatz^{2*}

 National Research Tomsk Polytechnic University, Tomsk, Russia
Johannes Gutenberg-University Mainz Institute of Organic Chemistry Mainz, Germany
e-mail:opatz@uni-mainz.de

Traditional Covalent Inhibitors of Proteases

Derivatives of:

- Alkyl halides,
- Michael acceptors,
- Alkyl boronates,
- ➢ Nitriles,
- Sulfonyl fluorides,
- Epoxides or aziridines.

The aim is the synthesis of fluorescent S_NAr -type warheads based on halogenated 2,1,3-benzoxadiazole derivatives.

New «warheads» for Covalent Protease Inhibitors

Electrophilic Derivatives of:

- Aromatic compounds,
- Heteroaromatic compounds,
- Quinoid compounds.

SYNTHESIS SCHEME 1

1

2

CI

CI

NO₂ 3 О

Fluorescence Spectrum of Compound 4a (7 · 10⁻⁵, MeCN)

The location of the maximum emissions in a relatively narrow wavelength region can be explained by the presence of a N-H…O=N-hydrogen bond.

Fluorescence Spectrum of Compound 4a $(7 \cdot 10^{-5}, MeOH)$

SYNTHESIS SCHEME 2

To eliminate the influence of the hydrogen bond on the fluorescent properties, we prepared a model compound from a secondary amine and studied its photophysical properties.

THE SYNTHESIS SCHEME 3

of Compound 6 ($7 \cdot 10^{-5}$, MeCN) 3000 2500 max = 540 nm2000 Intensity 1500 ex 441 1000 500 0 470 520 570 620 Wavelenght (nm)

We studied the S_NAr reaction of this compound with mercaptoethanol simulating the active cysteine residues in certain proteases and also studied the impact on the fluorescent properties.

Conclusions

- Derivatives of 2,1,3-benzoxadiazoles were synthesized as potential protease inhibitors allowing a multiparameter optical read-out and their photophysical properties were investigated.
- > The emission maxima of these compounds are located at relatively short wavelengths due to the presence of an intramolecular hydrogen bond.
- > Derivatives devoid of NH-protons have longer emission wavelengths and a second S_NAr reaction with a thiolate leads to an increase in the fluorescence intensity while keeping the emission wavelengths basically unchanged.

Acknowledgements

The reported study was funded by Ministry of education and science of Russian Federation according to the research project №412754.2018/12.2 and DAAD according to the research № 91687868. We thank Prof. Tanja Schirmeister (Mainz) for the biological evaluation of the intial compound series (data not shown).

Thank you for your attention!