

São Paulo State University - Brazil

Structural Damage Location by Low-Cost Piezoelectric Transducer and Advanced Signal Processing Techniques

Authors: Bruno A. de Castro, Fabricio G. Baptista, José A. C. Ulson, Alceu F. Alves, Guilherme A. M. Clerice, Bruno A. Hernandez and Fernando S. Campos.

Presenter: Dr. Fabrício Guimarães Baptista

Introduction

Experimental Setup

- 1**p**]
- The development of new low-cost transducers and systems has been extensively aimed in both industry and academia to promote a correct failure diagnosis in aerospace, naval and civil structures.

Objective

- Structural health monitoring (SHM) engineering is focused on promoting human safety and reduction of maintenance costs of these components.
- Traditionally, SHM aims to detect structural damages at the initial stage, before it reaches a critical level of severity. One of the most promising damage location technique is based on the triangulation of acoustic waves (AE).

Introduction

Experimental Setup

Results

Triangulation Concept

Objective

- A set of piezoelectric transducers is attached on a host structure in order to capture the acoustic waves produced by failures or cracks.
- The damage location is performed by a mathematical model which uses the difference of the time of arrival (TOA) of the signals and the wave velocity propagation in the component.
- Although this method may be simple, the detection of TOA requires complex statistical and signal processing techniques.

Conclusion

Introduction

Experimental Setup

Results

Conclusion

Acknowledgements

Triangulation Concept

Objective

- The triangulation concept measures the wave travelling time using a set of different located sensors assembled into a damaged structure.
- For each sensor I, attached on a host strucuture, for 1 < i < n, the mathematical model is given by:

$$\begin{cases} (x - x_{si})^2 + (y - y_{si})^2 + (z - z_{si})^2 - (V \cdot T_{si})^2 = 0, \\ T_{s1} - T_{si} - \Delta t_i = 0, \end{cases}$$

Introduction

Experimental Setup

Results

 Hinkley criterion (HC) (Eq. 1) and Akaike information criterion (AIC) (Eq. 2) are algorithms used for acoustic wave characterization in which energy and frequency values can vary in a wide range. The local minimum of both curves are the TOA of the AE signal.

$$H(k) = \sum_{k=0}^{N} y[k]^2 - \frac{S_N}{N} \qquad (1)$$

Objective

$$AIC(k) = kln(\sigma_{(1,k)}^2) + (N-k-1)ln(\sigma_{(k+1,N)}^2)$$
 (2)

Acknowledgements

Conclusion

Experimental Setup

Based on this, this work presented a comparative study between the application of Akaike and Hinkley criteria for TOA
determination using low-cost piezoelectric diaphragms.

Objective

Introduction

Introduction Objective

e Exp

Experimental Setup

Results

Conclusion

Acknowledgements

- Two piezoelectric diaphragms (PZT1 and PZT2) were positioned, one in each end, on an aluminum beam (2,5 m x 0,075 m x 0,003 m) using cyanoacrylate glue;
- Damages in the surface were created in four different locations on the beam's surface using the pencil lead break (PLB) test;
- A mechanical pencil is pushed against a material until the breakage of the graphite. The pushing generates an instantaneous damage and, as consequence, a microscopic displacement of mass;
- After each pushing, TOA from each sensor was acquired and evaluated using Hinkley and Akaike criteria. Figure 2 depicts the experiment procedure.

 $\begin{cases} x - V_{Al} \cdot t_1 = 0 \\ x + (V_{Al} \cdot t_2) - 2.5 = 0 \\ t_2 - t_1 - \Delta t_{2,1} = 0 \end{cases}$

Signals to disturbance at 0.5 m: (**a**) Total duration; (**b**) Zoom.

Data Acquisition and Transducers Laboratory – São Paulo State University – Brazil

10

Signal analyzed for damage at x = 0.5 m: (a) via Hinkley; (b) via Akaike.

Introduction

Objective

Experimental Setup

Results

Conclusion

Acknowledgements

Damage location using Hinkley and Akalke criteria.						
Real Damage	Position	Position	Error	Error		
Position (m)	Akaike (m)	Hinkley (m)	Akaike (%)	Hinkley (%)		
0.5	0.47	0.42	6	16		
1.25	1.25	1.21	0	3.2		
2	2.03	2.04	1.5	2		
2.5	2.49	2.52	0.4	0.8		

Demage location wing Uinklow and Alkaika mitaria

	Introduction	Objective	Experimental Setup	Results	Conclusion	Acknowledgements
--	--------------	-----------	---------------------------	---------	------------	------------------

 The differences in the excitation times caused by acoustic waves propagating in an aluminum beam instrumented with low-cost piezoelectric diaphragms were analyzed to compare both methods. The results have shown that the piezoelectric diaphragms are reliable, and Akaike criterium was more precise than Hinkley to locate damage.

Thank you!

Capes Foundation, Ministry f Education of Brazil. São Paulo Researcher Foundation - FAPESP