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Abstract
The technological advances in the area of opto-
electronic semiconductor devices has increased
significantly in the last decades due the great
demand for clean and renewable energy fonts.
Thus, the search for clean energetic fonts de-
mands a continuous attention on the efficiency
of electric current generation of these devices.
Among these advances we can highlight the uti-
lization of clean and renewable energy by means
of solar cells. They can be optimized as interme-
diate band solar cells, that present greater effi-
ciency in comparison to the usual ones. For the
quantum analysis of the optical and electronic
transport properties of intermediate band solar
cells, we developed a numerical algorithm for
the Schroedinger equation using the Fourier Grid
Hamiltoninan method, using as tool the high-
level computational language Julia. We obtained
the eigenstates of the Hamiltonian describing the
cell’s architecture and we were able to evaluated
the transition probabilities, giving us clues of the
transport and optical properties of intermediate
band solar cells.

Introduction
Solar cells are photovoltaic devices that produces electric current when their charge carriers interact

with light, more precisely, light in the visible area of the electromagnetic solar spectrum. The matter-
radiation interaction in these devices generate electron-hole pairs that, in a presence of a potential differ-
ence generated by the built-in field of the cell, are spatially separated and collect by the electric contacts,
generating electric current [1, 2].
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Aiming to increase the cell’s efficiency, and make them feasible to the large-scale use, the scientific
community has been mobilized in order to optimize the cell through the utilization of quantum wells
that simulate intermediate bands for optical transition. The bound states of the quantum well act as news
absorption channels to the sun-light, increasing the cell’s absorption and, consequently, its efficiency.

The improvement of these solar cells has quantum origin, and for this kind of analysis, is neces-
sary a computational treatment. For that, a numerical algorithm was developed for the resolution of
time-independent Schroedinger equation, using the programing language Julia [3], developed by MIT
(Massachusetts Institute of Technology). For the equation resolution it was used the method Fourier Grid
Hamiltonian, in order to find the eigenvalues and the eigenfunctions of Hamiltonian, that describe the
electronic dynamics in solar cells.

Methods
In order to accomplish the presented objectives, the solution of the time-independent Schroedinger

equation was obtained by the numerical simulation of a p-i-n junction containing a quantum well on its
intrinsic region. To solve the equation it was used the method Fourier Grid Hamiltonian [4], that allows
us to put the Schroedinger equation in a dual representation of the positions and the momenta. In this
representation, the kinetic and potential operators are projected in their specific eigenvector basis. The
method allow us to directly obtain the matrix elements of the Hamiltonian and, the diagonalization of
the matrix returns its respective eigenvectors and eigenvalues [5].

A particle subjected to an unidimensional potential is described by the time-independent Schroedinger
equation,

Ĥ = T̂ +V̂ (~x) =
P̂2

2m
+V̂ (~x), (1)

where T̂ and V̂ (~x) are the kinetic and potential operators, respectively.
To turn the equation resolution simpler, in the method we define each operator in their own represen-

tation. With the changes done for the operators, we got the analytic equation to the set of Hamiltonian
elements of matrix

〈x|Ĥ|x′〉= 1√
2π

∫
∞

−∞

e−ik(x−x′)Tkdk+V (x)δ (x′− x). (2)

Such equations are laborious or impossible to solve analytically. Hence, it is required a numeri-
cal implementation, and the equation can be solved computationally. Discretizing the subspaces and
describing the variables numerically, the following equation is obtained
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The eigenvectors and eigenvalues in discrete form are found from the diagonalization of Hamiltoni-
nan operator

det
[

Hi j−
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∆x

]
= 0. (4)

To solve the solar cells problem, the potential of p-i-n junction with quantum wells is described
numerically in a grid with the same quantity of points of the Hamiltoninan matrix. Therefore, the matrix
is then diagonalized returning its eigenvectors and eigenvalues, namely, the eigenstates and eigenenergies
of solar cells. The solution was implemented using the programing language Julia, which is very useful
with problems that require high computational cost.
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Results and Discussion
Once built the algorithm, the parameters were adjusted for the program generate an acceptable ap-

proximation compared to intermediate band semiconductors. The material utilized for the numerical
implementation of the quantum well was the Gallium Arsenide (GaAs) with the effective electron mass
m = 0,067, constant for all points of the grid.

Defining the initial parameters and generated the quantum well, the Hamiltonian matrix was written.
The matrix was diagonalized returning the eigenvectors and the eigenenergies. With these values we can
analyze the bounded and the non-bounded states in the quantum well. The figure 1 shows three energetic
states.

Figure 1: Three bound states in a potential well

With the states defined, it was possible to calculate the transition probability by means of the Fermi’s
Golden Rule. This rule define the photonic energy needed to the electronic excitation, being proportional
to the square root of the overlap between the ground state eigenvector and the excited ones. The figure 2
shows the absorption probability of the electron being excited from ground to excited states within the
conduction band of the solar cell. The most intense peaks define a higher probability of transition
between eigenstates with that energy difference.

Figure 2: Absorption probability given by the Fermi’s Golden Rule
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Conclusion
The method Fourier Grid Hamiltonian is straightforward and relatively simple to numerically eval-

uate the physical properties of intermediate band solar cells. The obtained results from this method are
coherent and, based on this, we can conclude that the algorithm, just like the language, are functional
and efficient, demonstrating results of quantum phenomena impossible to reach analytically. This work
have as principal intent complement the range of tools required to the improvement of intermediate band
solar cells.
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