

3rd International Electronic Conference on Water Sciences

15–30 November 2018 Chaired by Prof. Dr. Athanasios Loukas

THE EFFECT OF SAMPLE SIZE ON BIVARIATE RAINFALL FREQUENCY ANALYSIS OF EXTREME PRECIPITATION

Nikoletta Stamatatou, Lampros Vasiliades and Athanasios Loukas

Laboratory of Hydrology and Aquatic Systems Analysis, Department of Civil Engineering, University of Thessaly, Volos, Greece E-mail: lvassil@civ.uth.gr

OUTLINE

Introduction

Study Area and Database

Univariate Rainfall Frequency Analysis

Bivariate Rainfall Frequency Analysis

Modelling Dependence

Copulas

Results – Concluding Remarks

The objective of frequency analysis is to relate the magnitude of events to their frequency of occurrence through probability distributions.

HFA

Earthquakes

Floods, Droughts,

Extreme Rainfall

Storm surge, rogue waves, Tornadoes

Magnitude of

Events

Frequency of

Occurrence

Department of Civil Engineering, University of Thessaly HYDROLOGICAL FREQUENCY ANALYSIS

Dam Design values: Yermasoyia Dam

Flood risk map: Flood extent and water depths of return period T = 1000 years for Volos city, Greece

Volume of extreme rainfall

- Design of copulas for various hydrologic (-meteorological) applications (variables)
- Calculation and comparison of univariate and joint bivariate return periods
 - **Conditional** return period

 $1-u-v+C_{u,v}(u,v)$

Joint OR and AND return periods

either peak and duration exceed their threshold (cooperative risk)

both peak and duration exceed their threshold simultaneously (dual risk)

Objective: Multivariate approach on **RFA** using **copulas**

Design variables of the hydraulic structures

- Rainfall frequency estimation in a multivariate framework
 - **Dependence** of rainfall characteristics
 - peak rainfall

 - Storm duration

Department of Civil Engineering,

R

Illustration of joint probabilities

(from Brunner et al., 2016)

Quadrant I: Pr $[X > x, Y > y] = 1 - F_X(x) - F_Y(y) + F_{XY}(x, y) = S_{XY}(x, y)$

Quadrant II: $\Pr[X \le x, Y > y]$

Quadrant III : Pr $[X \le x, Y \le y] = F_{XY}(x, y)$

Quadrant IV : Pr $[X > x, Y \le y]$

Brunner M.I, Favre A.C., Seibert J. 2016. Bivariate return periods and their importance for flood peak and volume estimation. *WIREs Water* 2016. doi: 10.1002/wat2.1173

BIVARIATE Department of Civil Engineering, University of Thessaly FLOW DIAGRAM OF THE METHOD

LOCATION OF METEOROLOGICAL STATIONS, CYPRUS

3rd International Electronic Conference on Water Sciences

RAINFALL DATA, CYPRUS

Three Meteorological

Stations (Larnaka, Limassol and Nicosia)

- 90 year daily rainfall data
 - Historical period: 1920

- 2100

- Rainfall Depth (in cm) and
 Rainfall Duration (in days)
 were extracted.
- Annual Maxima Series for both variables

Determination of marginal distributions

Station				RETUR	N LEVEL				1	
Larnaka	2	5	10	25	50	100	200	500		
Depth (cm)	8.05	11.73	15.60	22.57	30.24	40.21	53.47	77.94		GEV
Duration (days)	5.17	6.90	8.16	9.74	10.95	12.09	13.20	14.61		GLV
Station									1	
Limasol	2	5	10	25	50	100	200	500		
Depth (cm)	10.14	13.07	15.17	17.74	19.66	21.45	23.15	25.27		
Duration (days)	5.17	6.90	8.16	9.74	10.95	12.09	13.20	14.61	5	GEV
Station										
Nicosia	2	5	10	25	50	100	200	500		
Depth (cm)	6.98	9.14	10.83	13.14	14.90	16.72	18.60	21.15		Gamma
Duration (days)	1.26	2.07	2.61	3.27	3.75	4.21	4.66	5.25		GEV

- GEV distribution was the optimal probability model for both rainfall depth and duration for Larnaka and Limassol Stations.
- For Nicosia Station, Gamma distribution had a better fit for rainfall depth and GEV distribution for the hydrograph duration respectively.
- Finally, with the help of the marginal distributions, the univariate return periods are estimated for design return periods

CW5

BIVARIATE Department of Civil Engineering, University of Thessaly

Dependence: Use of Chi and K plots

Dependence: Use of Kendall's tau coefficient

Fitting of a copula model

- Copulas from Archimedean, Elliptical and Extreme Value families are fitted using a pseudo-likelihood estimation method
 - Evaluation procedure
 - **G**raphical approaches and a goodness-of-fit test based on the Cramér von Mises statistic

Copula	$C_{\theta}(u,v)$	$\theta \in$	
Archimedean Copula	S		
Gumbel	$\exp\{-((-\ln u)^{\theta} + (-\ln v)^{\theta})^{1/\theta}\}$	[1,∞)	
Clayton	$\{u^{-\theta}+v^{-\theta}-1\}^{-1/\theta}$	[-1,∞)\{0}	
Frank	$-\frac{1}{ heta} \ln \left\{ 1 + \frac{(e^{- heta_{u-1}})(e^{- heta_{v-1}})}{e^{- heta_{v-1}}} \right\}$	$(-\infty,\infty)\setminus\{0\}$	
Joe	$1 - \{(1-u)^{\theta} + (1-v)^{\theta} - (1-u)^{\theta}(1-v)^{\theta}\}^{1/\theta}$	[1,∞)	
Extreme Value Copul	as		
Gumbel	$\exp\{-((-\ln u)^{\theta} + (-\ln v)^{\theta})^{1/\theta}\}$	[1,∞)	
Tawn	$uv\exp\left[-\frac{\theta \ln u \ln v}{\ln(uv)}\right]$	[0,1]	
Meta-eliptical Copul	as		
Normal	$\int_{-\infty}^{\sqrt{t}/2} \int_{-\infty}^{\sqrt{t}/2} \frac{1}{2\pi\sqrt{(1-\theta^2)}} \exp\left\{-\frac{s^2 - 2\theta st + t^2}{2(1-\theta^2)}\right\} dsdt$	[-1,1]	
Student-t	$\int_{-\infty}^{t_{v}^{-1}(u)t_{v}^{-1}(v)} \int_{2\pi\sqrt{(1-\theta^{2})}}^{1} \left\{ 1 + \frac{s^{2} - 2\theta st + t^{2}}{v(1-\theta^{2})} \right\}^{-\frac{v+2}{2}} dsdt$	[-1,1]	-
	- 3 rd International Electronic Conference on Water Scie	ences —	ECV

Fitting of a copula model

AIC values and accepted copulas for the three rainfall stations

3rd International Electronic Conference on Water Sciences

Accepted Copula

Rejected Copula

Modelling dependence and fitting of copulas

Results: AMS Joint Return Periods T^{OR} < T^{UNI} < T^{AND}

Station	RETURN LEVEL								
Larnaka	2	5	10	25	50	100	200	500	
Depth (cm)/ dual	5.33	6.69	7.36	7.88	8.10	8.21	8.27	8.30	
Depth (cm)/ cooperative	8.55	13.75	18.80	27.85	37.22	49.66	66.09	78.07	
Duration (d)/ dual	3.80	5.75	7.03	8.65	9.84	11.00	12.14	13.59	
Duration (d)/	6.03	8.25	9.62	11.25	12.41	13.52	14.59	24.44	

STATION LARNACA

Effect of Sample Size: Larnaca Station

	1st Data Sample	2nd Data Sample	3rd Data Sample	4th Data Sample
Station	LARNACA	LARNACA	LARNACA	LARNACA
Years	1920-2010	1920-1950	1950-1980	1980-2010
Length (In Years)	90	30	30	30
Number Of Events	90	30	30	30
Kendall's tau	0.14	0.17	0.15	0.14
RAINFALL DEPTH VARIABLE				
Sampling Method	AMS	AMS	AMS	AMS
Marginal Distribution	GEV	GEV	GEV	GEV
Distribution Parameters (μ,σ,ξ)	6.06, 2.49, 0.41	6.67, 2.79, 0.50	5.82, 1.74, 0.32	5.66, 2.65, 0.51
Kolmogorov smirnov Test(p>0.05)	0.9888	0.9991	0.9897	0.8259
RAINFALL DURATION VARIABLE				
Sampling Method	Corresponding value	Corresponding value	Corresponding value	Corresponding value
Marginal Distribution	GEV	GEV	GEV	GEV
Distribution Parameters (μ,σ,ξ)	3.82, 1.98, -0.04	3.91, 1.90, -0.08	4.38, 2.31, -0.14	3.30, 1.68, 0.05
Kolmogorov smirnov Test(>0.05)	0.2240	0.6968	0.6647	0.7534
Copula Model	Frank, (par=1.22,tau=0.13)	Survival Clayton (par = 0.50, tau = 0.20)	Joe (par = 1.40, tau =0.18)	Clayton (par=0.46,tau=0.19)
Von Mises (bootstrap)(p>0.05)	0.1200	0.5589	0.2000	0.1111

Effect of Sample Size on Dependence: Larnaca Station

CW5

Effect of Sample Size: Limasol Station

	1st Data Sample	2nd Data Sample	3rd Data Sample	4th Data Sample
Station	LIMASOL	LIMASOL	LIMASOL	LIMASOL
Years	1920-2010	1920-1950	1950-1980	1980-2010
Length (In Years)	90	30	30	30
Number Of Events	90	30	30	30
Kendall's tau	0.35	0.33	0.26	0.59
RAINFALL DEPTH VARIABLE				
Sampling Method	AMS	AMS	AMS	AMS
Marginal Distribution	GEV	GEV	GEV	GEV
Distribution Parameters (μ,σ,ξ)	7.79, 3.47, -0.07	8.70, 3.39, -0.19	6.87, 2.82, 0.14	7.74, 3.80, -0.06
Kolmogorov smirnov Test(p>0.05)	0.7835	0.9878	0.9412	0.8746
RAINFALL DURATION VARIABLE				
Sampling Method	Corresponding value	Corresponding value	Corresponding value	Corresponding value
Marginal Distribution	GEV	GEV	GEV	GEV
Distribution Parameters (μ,σ,ξ)	5.42, 2.65, -0.02	5.52, 2.89, -0.20	6.12, 2.85, -0.07	4.83, 2.18, 0.10
Kolmogorov smirnov Test(>0.05)	0.4212	0.5704	0.5942	0.6988
Copula Model	Gaussian (par = 0.54, tau = 0.36)	Clayton (para=0.81,tau=0.29)	Frank (para=2.34,tau=0.25)	Gumbell (para=2.63,tau=0.62)
Von Mises (bootstrap) (p>0.05)	0.18	0.4400	0.9700	0.2400

Effect of Sample Size: Nicosia Station

	1st Data Sample	2nd Data Sample	3rd Data Sample	4th Data Sample
Station	NICOSIA	NICOSIA	NICOSIA	NICOSIA
Years	1920-2010	1920-1950	1950-1980	1980-2010
Length (In Years)	90	30	30	30
Number Of Events	90	30	30	30
Kendall's tau	0.27	0.33	0.19	0.18
RAINFALL DEPTH VARIABLE				
Sampling Method	AMS	AMS	AMS	AMS
Marginal Distribution	GEV	GEV	GEV	GEV
Distribution Parameters (μ , σ , ξ)	5.39, 2.26, 0.04	6.04, 2.54, 0.12	5.09, 2.16, -0.02	5.57, 2.13, -0.44
Kolmogorov smirnov Test(p>0.05)	0.9071	0.9909	0.8721	0.4083
RAINFALL DURATION VARIABLE				
Sampling Method	Corresponding value	Corresponding value	Corresponding value	Corresponding value
Marginal Distribution	GAMMA	GAMMA	GEV	GEV
Distribution Parameters (μ,σ,ξ)	shape= 2.66,rate= 0.54	shape= 2.68,rate= 0.48	2.81, 1.95, 0.31	3.54, 1.72, 0.06
Kolmogorov smirnov Test(>0.05)	0.1094	0.4000	0.4600	0.5469
Copula Model	Survival Gumbel (par = 1.37, tau = 0.27)	Clayton (para=1.18,tau=0.37)	Joe (para=1.43,tau=0.19)	Survival Joe (par = 1.62, tau = 0.26)
Von Mises (bootstrap) (p>0.05)	0.1425	0.1000	0.2000	0.0600

Effect of Sample Size: Results

 $T^{OR} < T^{UNI} < T^{AND}$ relationship

Significant inconsistences in AND and OR cases especially in Larnaka Station

BIVARIATE Department of Civil Engineering, University of Thessaly Effect of Sample Size: Results

CONCUDING REMARKS

- Results show that univariate analysis can't provide a complete assessment of the probability of occurrence of extreme rainfall if two or more dependent variables are significant in the design process
 - univariate approaches might lead to an inadequate estimation of the risk associated with a given event
- Minor dependence between rainfall peaks and storm duration
 - **bivariate analysis** could be considered in the estimation of **design values**
- **Sample size** has large impacts on the derived results
 - Further investigation is needed for variable data lengths (small and large samples)
- Design values at the study return periods are in consensus with Salvadori et al., (2007) following the equation T^{OR} < T^{UNI} < T^{AND}
 Salvadori C. Da Michele C. Kettegeda NT. Passa P. Extremes in Nature. An Approach Using Copular.

Salvadori G, De Michele C, Kottegoda NT, Rosso R. Extremes in Nature. An Approach Using Copulas, vol. 56. Dordrecht: Springer; 2007, 292 p.

THANK YOU FOR YOUR ATTENTION!

Dr. Lampros Vasiliades

Laboratory of Hydrology and Aquatic Systems Analysis Department of Civil Engineering, School of Engineering, University of Thessaly Pedion Areos, 38334 Volos, Greece E-mail: lvassil@civ.uth.gr

ECWS-3

3rd International Electronic Conference on Water Sciences

15–30 November 2018 Chaired by Prof. Dr. Athanasios Loukas

