

3. Data and Scenarios analysis					
	Schemes	Calibration		Forecast	
		Model	Calibration method	Model	State-parameter upda
	1	NAM	GLUE	NAM	None
	2			NAM	States updated
	3			NAM	Dual parameters-state
	4	PCE	GLUE	PCE	None
	5			PCE	States updated
	6			PCE	Dual parameters-state

Improving the efficient and robust uncertainty quantification in real-time flood forecasting using Polynomial chaos expansions and ensemble Kalman filter

Tran Ngoc Vinh and Jongho Kim* vinhtn@mail.ulsan.ac.kr and kjongho@ulsan.ac.kr

Time required in 100 cores Model runs required (I0 points per dimension) (30 CPU minutes per simulation¹ 10 3 minutes 100 30 minutes I 000 5 hours 10 000 ~ 2 days 10 000 000 \sim 5.7 years Input \boldsymbol{u} with T_n Parameter range of M Initial states x_0 at time *t*=0 parameters $\boldsymbol{\theta}$ time Latin hypercube sampling UE Run model ā $[y \ x] =$ Bin GL $Model(x_0, u, \theta)$ loop Likelihood function Observation (y^{obs} Acceptance threshold Ensemble model state Ensemble Uncertainty of at $t = T_p$ behavioral sets (*n*) model simulation $\boldsymbol{x}_{T_{n}}^{l}; i = 1, ..., n$ $y^i; i = 1, ..., n$ $\theta^{i}; i = 1, ..., n$ 200PCE model - ·NAM model 900 05 โง Se 600 \mathbf{O} Tim 300 t = t + 18000 10000 4000 6000 Ensemble size The comparison of the executed time between NAM and PCE model 6000 ting the second secon s updated 2000 s updated

6. Conclusions

• PCE model is able to efficiently quantify uncertainties caused by many sources with ten time faster than NAM model

□ The GLUE method can be used to generate the initial input for EnKF to imprive efficient of forecasting **□** Results forecasted with a metamodel based on PCE method are as good as those by MIKE-NAM modelthrough automatic updating of states and parameters by EnKF