Improving the efficient and robust uncertainty quantification in real-time flood forecasting using Polynomial chaos expansions and ensemble Kalman filter

Tran Ngoc Vinh and Jongho Kim*
vinhnt@mail.ulsan.ac.kr and kjongho@ulsan.ac.kr

1. Motivation in hydrologic flood forecasting

- Quantifying the uncertain ranges due to many sources is indeed important but time consuming.
- Securing sufficient (golden) time plays a significant role in terms of flood warning and risk mitigation.

Parameter	Range of \(\theta \)	NAM and PCE	Automatic updating of states and parameters by
\(\theta \)	3 minutes if 30 sec	30 minutes	EnKF
\(\theta \)	50 minutes	3 hours	GLUE
\(\theta \)	3 days	~2 days	PCE
\(\theta \)	~5.7 years	~5.7 years	PCE

2. Methodology

2.1. PCE model construction

- Effects of Experiment Design (N) & Polynomial degree (p) & Metamodel-PCE (Experiment design, N = 1000 and Polynomial Degree, p = 3)

2.2. Real-time flood forecasting based on PCE and Dual EnKF

- The result of model forecasting in real-time: Scheme 1 and 4 are NAM model and PCE model; Scheme 2 and 5 are NAM model and PCE mode with updated state using EnKF; Scheme 3 and 6 are NAM model and PCE model with dual parameter-state updated using Dual-EnKF.

3. Data and Scenarios analysis

| Scheme | Calibration | Forecast | Model update or update
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NAM</td>
<td>GLUE</td>
<td>EnKF - state updated</td>
</tr>
<tr>
<td>2</td>
<td>NAM</td>
<td>GLUE</td>
<td>GLUE - state updated</td>
</tr>
<tr>
<td>3</td>
<td>NAM</td>
<td>PCE</td>
<td>PCE - state updated</td>
</tr>
<tr>
<td>4</td>
<td>PCE</td>
<td>GLUE</td>
<td>GLUE - state updated</td>
</tr>
<tr>
<td>5</td>
<td>PCE</td>
<td>PCE</td>
<td>PCE - dual parameter</td>
</tr>
<tr>
<td>6</td>
<td>PCE</td>
<td>PCE</td>
<td>PCE - dual parameter</td>
</tr>
</tbody>
</table>

4. PCE model construction

5. Conclusions

- PCE model is able to efficiently quantify uncertainties caused by many sources with ten time faster than NAM model.
- The GLUE method can be used to generate the initial input for EnKF to improve efficient of forecasting.
- Results forecasted with a metamodel based on PCE method are as good as those by MIKE-NAM model through automatic updating of states and parameters by EnKF.