Application of targeted and non-targeted approaches to investigate the effect of genotype and growing conditions on the strawberry metabolome

Raúl González-Domínguez 1,2*, Ana Sayago 1,2, Ángeles Fernández-Recamales 1,2

1 Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, 21007 Huelva, Spain.
2 International Campus of Excellence ceiA3, University of Huelva, 21007 Huelva, Spain.

* Corresponding author: raul.gonzalez@dqcm.uhu.es
Application of targeted and non-targeted approaches to investigate the effect of genotype and growing conditions on the strawberry metabolome
Abstract:
Strawberry is composed of numerous primary metabolites (sugars, amino acids, organic acids) and secondary metabolites (anthocyanins, flavan-3-ols, phenolic acids), which play an essential role in fruit quality, organoleptic characteristics and healthy benefits. In this context, metabolomics presents a great potential to get a deep overview of this complex chemical meshwork, which can provide valuable information on the effect of variety and agronomic conditions in the strawberry composition. We conducted a GC/MS-based non-targeted metabolomic analysis in strawberries of three varieties with different sensitivity to environmental conditions (Camarosa, Festival and Palomar), which in turn were grown in soilless systems by using various agronomic conditions (electrical conductivity, coverage and substrates). Complementarily, a targeted metabolomic approach based on UHPLC-MS/MS was also applied to identify and quantitate the main polyphenol compounds in these strawberry fruits. The most discriminant metabolites were several amino acids, sugars, organic acids, anthocyanins, ellagic acid derivatives, flavan-3-ols, chlorogenic acid and quercetin 3-O-glucuronide, which could be associated with differences in organoleptic characteristics and the biosynthesis of strawberry antioxidants.

Keywords: metabolomics; strawberry; GC-MS, polyphenols
Introduction

Primary metabolites
- Sugars
- Organic acids
- Lipids
- Amino acids

Secondary metabolites
- Anthocyanins
- Flavan-3-ols
- Ellagitannins
- Phenolic acids

✓ fruit quality
✓ organoleptic characteristics
✓ healthy benefits
Introduction

- Variety
- Growth conditions
- Agricultural practices
- Response to biotic and abiotic stress
- Post-harvest factors
Materials and Methods

Growing conditions

- Macrotunnel type: covered vs. uncovered
- Electrical conductivity: 1, 2 and 3 dS/m
- Soilless commercial substrates: coconut fiber, perlite and rockwool

- Extraction with methanol-water
- Derivatization and non-targeted analysis by GC-MS (primary metabolites)
- Analysis by targeted LC-MS/MS (secondary metabolites)

(2) J. Agric. Food Chem. 65 (2017) 9559-9567
Results and Discussion

Effect of variety on metabolomic profiles

\[\text{cv. Camarosa (resistant cultivar)} \]

- \text{citric acid} \quad \text{glucose, fructose}
- \text{alanine, norvaline, threonine, aspartate}
- \text{inositol}
- \text{anthocyanins, ellagic acid}
\text{rhamnoside, quercetin 3-O-glucuronide, procyanidin B2}

\text{organoleptic quality of strawberry}

\text{osmotic adjustment and protection of biochemical pathways}

\text{accumulation in osmotically challenged plants}

\text{up-regulation of the shikimate and malonate pathways}

\text{tolerance mechanisms in response to environmental stress}
Results and Discussion

Effect of macrotunnel type on metabolomic profiles

covered macrotunnel \rightarrow strawberries are grown under controlled conditions, light intensity is reduced; temperature is higher; and moisture is controlled by regular irrigation

\uparrow malic acid
\uparrow threonine \downarrow norvaline
\downarrow fructose
\uparrow anthocyanins, ellagic acid derivatives

\rightarrow low sun exposure

\rightarrow humid climate

\rightarrow reduced light intensity and higher temperature
Results and Discussion

Effect of electrical conductivity on metabolomic profiles

higher electrical conductivity

- ↓ citric acid, malic acid
- ↓ alanine
- ↑ inositol
- ↑ glycerol
- ↑ anthocyanins

increase of osmoprotectants and antioxidants, decrease of essential amino acids and TCA derivatives (mainly detected in more resistant cultivars, i.e. Camarosa)

response to osmotic stress (increased salt content)
Results and Discussion

Effect of substrate on metabolomic profiles

- coconut fiber
 - citric acid
 - glucose, fructose
 - anthocyanins
 - ellagic acid derivatives

Increase of sugars and organic acids (organoleptic characteristics of fruits) and polyphenols (bioactive compounds)

Coconut fiber is the best substrate for the production of strawberry in soilless culture
Conclusions

✓ Combined non-targeted and targeted metabolomics has a great potential to investigate the effect of variety and agronomic practices on strawberry composition

✓ cv. Camarosa (resistant cultivar) has increased levels of amino acids, inositol and polyphenols as a consequence of tolerance mechanisms in response to environmental stress

✓ Cultivation in covered macrotunnel induces a specific metabolic profile due to reduced light exposure, higher temperature and humidity

✓ Higher conductivity of irrigation leads to the increase of osmoprotectants and antioxidants, and the decrease of essential amino acids and TCA derivatives as a consequence of the response to osmotic stress

✓ Strawberries grown in coconut fiber have increased content of sugars, organic acids and polyphenols