

3rd International Electronic Conference on Metabolomics

15-30 November 2018 chaired by Prof. Peter Meikle, Dr. Thusitha W. Rupasinghe, Prof. Susan Sumner, Dr. Katja Dettmer-Wilde

A Metabolic Pattern of Influenza A Virus Infected Sus scrofa: Perturbations on Eicosanoids and Gut Metabolism

Daniel Schultz, Karen Methling, and Michael Lalk*

University of Greifswald, Institute of Biochemistry, 17489 Greifswald

* Corresponding author: lalk@uni-greifswald.de

Introduction:

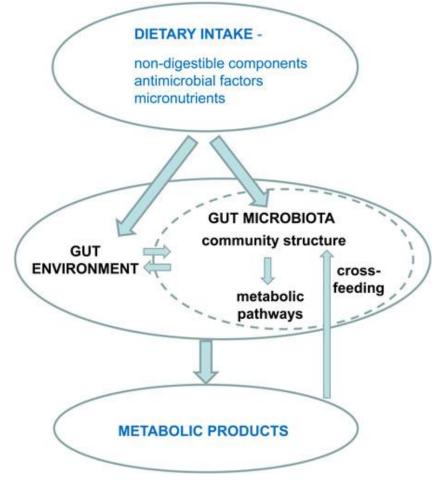
- Acute infections of the upper respiratory tract are associated with 4 million deaths per year one of the most frequently causes of death world wide¹.
- Influenza A virus infections in combination with secondary bacterial (*S. aureus, S. pneumoniae*) infections can lead to even higher mortality rates.
- The pig as a new animal model is more close to humans (microbiome, genetics, immune system, organ structure and function²) compared to mouse or cell culture experiments.

 \rightarrow Hypothesis I: Are there infection-related perturbations in the pig fecal metabolome?

\rightarrow Hypothesis II: Is the eicosanoid profile altered in infected pigs?

¹ Walker CL, Rudan I, Liu L *et al.* Global burden of childhood pneumonia and diarrhoea. *Lancet* 381(9875), 1405-1416 (2013).

² Meurens F, Summerfield A, Nauwynck H, Saif L, Gerdts V. The pig: a model for human infectious diseases. *Trends Microbiol* 20(1), 50-57 (2012).
 ³ Kamada N, Seo SU, Chen GY, Nunez G. Role of the gut microbiota in immunity and inflammatory disease. *Nat Rev Immunol* 13(5), 321-335 (2013).



MDPI

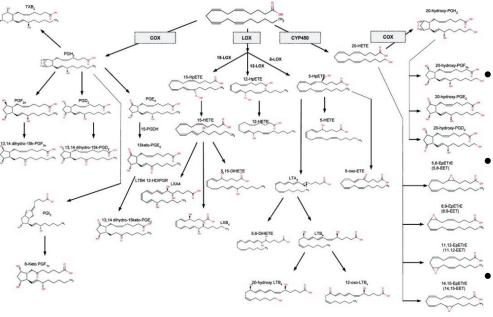
sponsors;

Hypothesis I: Interplay between host and microbiota

 protocol optimization for homogenization and extraction of metabolites from fecal material

sponsors:

MDPI


- GC-MS and ¹H-NMR measurement
- difficult distinction between metabolites from gut microbiota (e.g. short chain fatty acids) and host metabolites
- aim: specific metabolic pattern related to infection diseases (mono-infection and co-infection)

Flint et al: Links between diet, gut microbiota composition and gut metabolism, The Nutrition Society, 2015

Hypothesis II: Role of oxidated lipids (eicosanoids) in infection

 eicosanoids are part of the immune response (activation and resolving)

sponsors;

play a role in: inflammation, fever, allergy, pain, cell growth or blood pressure

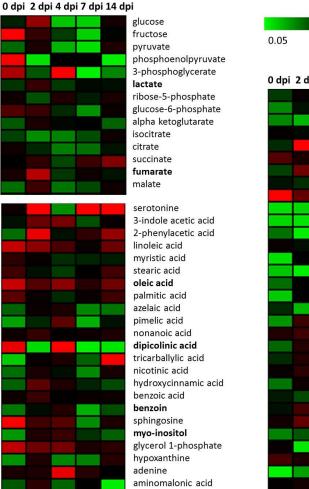
extraction and purification steps¹ needed for LC-MS/MS measurement using dynamic multiple reaction monitoring

aim: eicosanoid profile as marker for immune response (mono-infection and co-infection)

Figure: Masoodi et al: Comprehensive Lipidomics Analysis of Bioactive Lipids in Complex Regulatory Networks, Anal. Chem. (2010) ¹Gomolka *et al*. Analysis of omega-3 and omega-6 fatty acid-derived lipid metabolite formation in human and mouse blood samples. *Prostaglandins Other Lipid Mediat*. 94, 81–87 (2011)

Infection experiment conditions:

animals	 Group of pigs (german landrace) from a commercial high health status (negative tested for influenza infection) control and infection group free access to water and standard diet 	
infection	Influenza A virusnasal administration	
sample material	 fecal material, lung, spleen, blood plasma and bronchoalveolar lavage [BAL] 	
timepoints	 0, 2, 4, 7, 14 dpi for feces 4, 7, 14 and 31 dpi for tissues and body fluids 	
replicates	 4 for fecal material at least 5 for infected tissues and body fluids 	


sponsors: MDPI metabolites

sponsors: MDPI

metabolites

Results: Analysis of fecal material

0 dpi 2 dpi 4 dpi 7 dpi 14 dpi

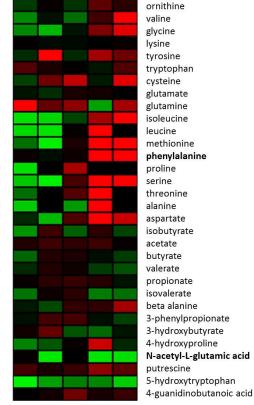


Figure 1. Heatmap displaying fold changes (infection/control) of all detected metabolites from ¹H-NMR and GC-MS analysis of feces. Bold names of metabolites indicate significant changes (p<0.01, unpaired t test) for at least one time point.

Results: Eicosanoid profile

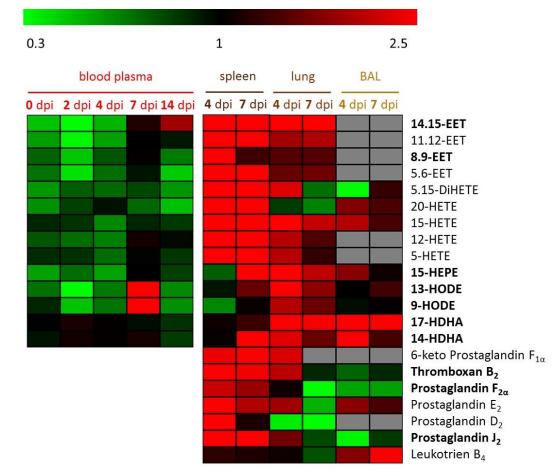
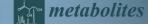



Figure 2. Heatmap displaying fold changes (infection/control) of detected eicosanoids from LC-MS/MS measurement of organ and biofluid. Bold names of eicosanoids indicate significant changes (p<0.05, unpaired t test) during infection at least in one sample type and time point. Grey fields: below quantification limit.

sponsors: MDPI

Discussion:

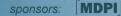
- Pigs infected with a low pfu of Influenza virus **didn't show any clinical scoring** (like increased temperature, body weight loss), but a positive virus titer.
- Analysis of fecal metabolome reveals a **high dynamic range** for detected metabolites concerning **time and single animal**.
- Eicosanoid profiling delivers a hint for **acitivated immune response in the spleen** at 4dpi (increased level of pro-inflammatory prostaglandin $F_{2\alpha}$ and thromboxane B_2).
- Increased level of anti-inflammatory 17-HDHA in the lung could be an evidence for resolution of the immune response at 4 dpi. ThIS lipid is also known to mediate specific antibodies against Influenza A.

metabolite

MDPI

sponsors:

Eicosanoid analysis in cell culture and mice experiments infected with *S. pneumoniae* strains


	cell culture	mouse
host strain	• 16-HBE	• B6 mice
infection	S. pneumoniae	S. pneumoniaecolonization (low dose)acute infection (high dose)
replicates	 4 (control and infection) 	 10 for control after 7 days 10 for colonization at 7 dpi 12 for infection at 2 dpi

MDPI

sponsors:

16-HBE cells infected with S. pneumoniae

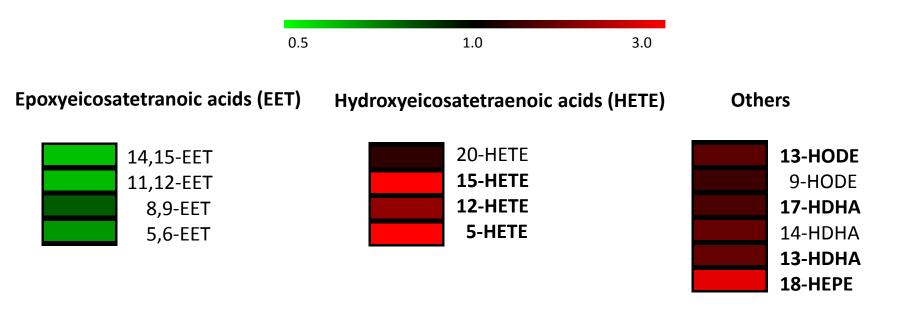


Figure 3. Heatmaps displaying fold changes (infection/control) of detected eicosanoids from LC-MS/MS measurement normalized for 1x10⁷ cells. Bold names of eicosanoids indicate significant changes (p<0.1, multiple t test, Holm-Sidak correction) during infection.

sponsors: MDPI

metabolites

Mice infected with S. pneumoniae

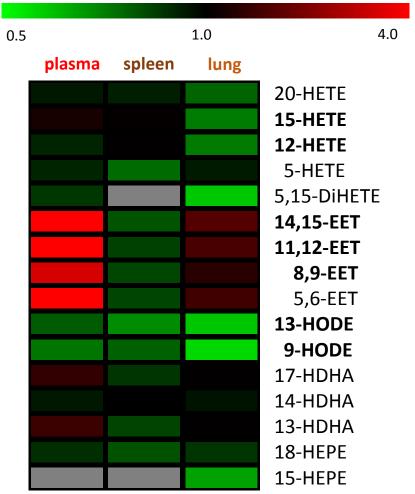


Figure 4. Heatmaps displaying fold changes (infection/control) of detected eicosanoids from LC-MS/MS measurement.

Bold names of eicosanoids indicate significant changes (p<0.05, multiple t test) during infection at least in one sample type.

Discussion and summary:

Cell culture:

- Infection with S. pneumoniae leads to numerous changes in the eicosanoid profile of 16-HBE cells.
- ightarrow increase of different anti-inflammatory lipid mediators like 13-HODE and 17-HDHA
- → strong activation of 5-LOX pathway

Mice:

- Colonization of mice with *S. pneumoniae* has no influence on the eicosanoid profile
- Acute infection of mice influences the amount of eicosanoids.
- \rightarrow high levels of anti-inflammatory EETs in plasma samples
- ightarrow perturbations in the HETEs level for spleen and lung tissue

MDPI

sponsors;

Outlook:

- pig mono-infection experiment with high pathenogenic bacteria
- **co-infection** with virus and bacteria in pigs
- virus mono-infection experiments in cell culture and mice
- **co-infections** with virus and bacteria in cell culture and mice
- MSI to localize special lipid mediators in mice lung and spleen
- → Metabolomics to elucidate host pathogen interaction (multi-omics approach)
- \rightarrow Is there an impact on the microbiota?
- \rightarrow How is the immune system stimulated by the infections?
- \rightarrow Are there differences between the host metabolome of mono-and co-infections?

MDPI

sponsors:

Acknowledgements

- LIPIDOMICS (Berlin): Michael Rothe
- FLI (Isle of Riems): Charlotte Schröder, Theresa Schwaiger
- University of Greifswald: Nikolai Siemens, Nicolas Stelling, Surabhi Surabhi, Sebastian Skorka and Fabian Cuypers

Sciforum

EUROPÄISCHE UNION Europäischer Sozialfonds

MDPI

sponsors;

