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Abstract: In this work, through Monte Carlo analyses on statistical volume elements we show the 

effect of the grain morphology and orientation on the effective elastic properties of polysilicon 

beams constituting critical MEMS components. The outcomes of the numerical investigation are 

summarized through statistical (lognormal) distributions for the elastic properties as function of 

grain size and morphology, quantifying therefore not only the relevant expected mean values but 

also the scattering around them. Such statistical distributions represent a simple, yet rigorous 

alternative to cumbersome numerical analyses. Their utility is testified through the analysis of a 

statically indeterminate MEMS structure, quantifying the possible initial offset away from the 

designed configuration due to the residual stresses arising from the micro-fabrication process. 
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1. Introduction 

The drive towards miniaturization in MEMS industry leads unavoidably to question the 

hypothesis of homogeneity, commonly accepted from the continuum mechanics perspective. For 

polysilicon films, grain morphology and orientation eventually influence the mechanical response of 

MEMS devices when critical structural components (such as the suspension springs) are downsized 

[1-6]. Moreover, the deep reactive-ion etching process, leading to the so-called over-etch [7] whose 

relevance gets increased when referred to dimensions comparable with the grain size, affects the 

accuracy of the geometrical layout [8]. Under these conditions, the expected spread in the operational 

behavior of the devices is a matter of concern both for MEMS design and reliability [9-10]. While this 

consequence is well known and expected, the quantification of the aforementioned spread is far from 

being under control. 

In this work, we focus on the analysis of the shift from the designed position for a statically 

indeterminate MEMS structure subject to residual stresses arising from the production process. While 

in an ideal design the exact dimensions and elastic behavior of the structural components can be 

foreseen with reasonable accuracy, in practice the dimensions of critical components become 

comparable with the silicon grain size. Accordingly, the material should be handled as 

heterogeneous, and the movable structure as an uncertain domain. Even if the effects of the scattering 

around the target elastic properties on the overall MEMS behavior are shadowed by other issues, for 

a moving mass held into position by nominally identical springs the uncertainty about the stiffness 

properties immediately leads to a sensible offset away from the reference. This offset comes into play 

because of the always-present residual stresses in the polycrystalline silicon film, as shown in the 

next Section 2. To account for the intrinsic stochastic nature of the problem, we propose in Section 3 

to artificially build, via Voronoi tessellations, stochastic volume elements (SVEs) whose size is related 

to the MEMS critical component size. Each realization of the SVEs includes its own silicon grain 
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morphology, so that accurate finite element (FE) analyses can provide the cumulative distribution 

function (CDF) of the relevant elastic properties. To overcome the computational burden in the 

analysis at the MEMS level, the numerical CDFs are best fitted with lognormal distributions. By 

means of these latter analytical CDFs, in Section 4 we show how to estimate the overall stiffness of 

(even folded) beams and how to apply such estimate to the quantification of the offset induced by 

the residual stresses. 

2. Statically indeterminate MEMS structure 

We consider a rather simple scheme, common to several MEMS devices [15]: a movable plate, of 

mass m, is connected to the substrate via two suspension springs. Even if nominally identical as 

discussed in the Introduction, we assume that the stiffness is a stochastic variable, so that the values 

relevant to the two springs are k1=k+1 and k2=k+2, k being the target and 12, (either positive or 

negative) being the two values drawn from the CDF. The source of this difference is here assumed to 

be due to the effect of the morphology only; spatially-varying over-etch defects are therefore 

disregarded. 

As the microstructure is statically indeterminate, an internal force F, to be considered the 

resultant of the residual stresses, provides a displacement of the movable mass whenever k1k2. The 

relationship between this force and the offset displacement u away from the rest condition reads: 

𝑢 =
∆1−∆2

2(𝑘+∆1)(𝑘+∆2)
𝐹          (1) 

where the sensitivity to the imperfections 1 and 2 of the spring stiffness is evidenced. 

In the proposed framework, each quantity in Eq. (1) is a random variable. 

3. Spring stiffness as a function of polysilicon grain morphology 

To account for the influence of film morphology on the spring stiffness, we adopt numerical 

simulations exploiting an artificial Voronoi tessellation to build the polycrystalline grain boundary 

network [11]. The whole spring should be subdivided into silicon grains, each one owning its own 

axes of elasticity. As the numerical costs of such an approach would be significantly high and the 

result would be valid for a specific spring geometry only, we introduce a square SVE, whose 

dimensions are equal to the spring nominal width. Two geometries are here handled, of size 2x2 m2 

and 3x3 m2 (see Figure 1). At variance with the analyses of representative volume elements (RVEs) 

[12-13], where an averaged value only is obtained for the elastic properties, with SVEs an estimate of 

the probability distribution of the mentioned properties is obtained [14]. Therefore, by carrying out 

the homogenization of the SVE elastic properties in a Monte Carlo analysis, we obtain the CDF for 

these quantities: in Figure 2, for the two SVE cases 2x2 m2 and 3x3 m2, the CDFs of the in-plane 

Young’s modulus are depicted. The FE analyses are run by applying two different types of boundary 

conditions (BCs), i.e. by applying a uniform stress (labelled “E-force” in the figure) or a uniform strain 

(labelled “E-disp” in the figure) BCs to bound the real results [11]. As well-known in the relevant 

literature [12], the plots show that the uniform strain BCs provide an upper bound (orange line), 

while the uniform stress BCs provides a lower bound (red line) on the actual solution. By comparing 

the graphs for the two SVE sizes, it is clear that the 3x3 m2 SVE is characterized by values closer to 

the mean, with a steeper distribution around it. The greater variability of the 2x2 m2 SVE is expected, 

since in this latter case the grain size becomes comparable with the SVE dimension. 

Each numerical CDF is then fitted with a lognormal distribution 

𝐿𝐸(𝑥) =
1

2
+

1

2
erf [

ln 𝑥−𝜇

√2𝜔
]           (2) 

where x is the random variable representing the Young’s modulus as output of the SVE analyses, 

erf[·] is the Gauss error function,  and 𝜔2 are the mean and the variance to be evaluated. 
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Figure 1. Examples of 2x2 m2 SVE; for each silicon grain, the in-plane crystal lattice orientations are shown at 

each crystal centroid. 

 

 
(a) 

 
(b) 

Figure 2. CDFs of the homogenized in-plane Young’s modulus of the polysilicon film: (a) 2x2 m2 SVE, (b) 

3x3 m2 SVE. 

4. Estimate of the overall spring stiffness 

4.1. Methodology 

Once the lognormal CDFs have been set for the SVE, the geometry of a suspension spring can 

be subdivided into subsets, whose geometry is related to the SVEs dimensions, see Figure 3. We 

postulate that the overall stiffness is obtained by assigning to each subsets a Young’s modulus 

extracted from the corresponding CDF. 

We consider here a simple beam geometry, with a fixed constraint at one end (no displacements 

and no rotations allowed) and a slider at the opposite end, where the motion is in the direction 

perpendicular to the beam axis only, while no rotations are allowed. By means of the principle of 

virtual work, and allowing for beam slenderness to neglect shear strains, the force P and the 

corresponding displacement u can be related to provide the ratio P/u as the beam stiffness k. 
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Figure 3. Scheme adopted for the subdivision of a spring into N subsets. A slider is imposed at the top end, while 

at the bottom end the beam is fixed. Each subset features a Young’s modulus extracted from the analytical CDF.  

 

The outcomes of this reasoning, that depends on the number of subdivisions N along the beam length, 

is: 

𝑘 =
𝑃

𝑢
=

𝐼

𝑙3
(

1

∑
𝜓𝑖
𝐸𝑖

𝑁
𝑖=1

),         (3) 

where: i is the index running over the subsets handled; 𝜓𝑖 is a corrective factor dependent on the 

placement of the i-th subset; I is the moment of inertia of the beam, and 𝑙 is the beam length (assumed 

here equal to 200 m or 300 m in the analyses). Since the overall stiffness is a function of the random 

variable E, then it is a random variable too. 

The actual CDF of F resulting from the production process can be estimated as well. Without any 

specific reference to real conditions, in this work we assume for F a normal distribution with a mean 

value of 10 MPa and a variance of 1.667 MPa.  

4.2. Discussion 

In Figure 4, the CDFs of the offset of the mass from the rest condition are reported, as obtained with 

Monte Carlo analyses based on Eq. (1). In orange we show the CDFs obtained with the (analytical) 

lognormal distributions, while in black we provide the CDFs obtained from the SVE-finite element 

simulations. Since the mean value is the same (zero offset), the main difference between the two 

solutions is mostly due to the correct approximation of the variance of E and, therefore, of k. The 

analytical approach, which is less expensive with respect to the computational one, represents 

correctly the information obtained from the FE analyses, where the microstructure has been taken 

into account through the SVEs. Around the zero mean value, the offset becomes positive or negative 

depending on the difference between the stiffnesses of the right and left springs. The 200x2 case (beam 

length equal to 200 m, width equal to 2 m) actually shows a larger variability of the offset with 

respect to the 300x3 case, as expected from the larger spread in the lognormal CDF shown in Figure 

2a with respect to Figure 2b.  

It is worth to emphasize that the offset is generated by the scattering of the values of the spring 

stiffnesses around the mean: therefore, it depends on the standard deviations of the CDFs, and not 

on the mean values. Any stochastic method providing an offset estimate should then address the 

quantification of the variance of the random variables associated to the elastic properties, not only of 

their mean values. 
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Figure 4. Comparison between (orange) analytically-generated and (black) FE-generated offset CDFs 

for different beam sizes: (a) 200 m x 2 m, (b) 300 m x 3 m. 

5. Conclusions 

In this work, we have proposed a method to estimate the offset from the rest position of statically 

indeterminate structures of MEMS devices, featuring a moving mass held into position by two 

springs. Because of the uncertainties of the microfabrication process, a stochastic Monte Carlo method 

has been adopted to account for the heterogeneity of the material in addressing the definition of the 

elastic properties. The polycrystalline morphology has been accounted for by a Voronoi tessellation 

of statistical representative volumes, whose dimensions have been assumed equal to the spring 

width, comparable with the silicon grain size.  

The homogenized Young’s modulus, obtained with the finite element simulations, has provided 

a numerical cumulative distribution function that has been approximated by an analytical, lognormal 

distribution for each SVE size. These analytical distribution functions have been then used to describe 

the stiffness of a spring supporting the moving mass. In the presence of residual stresses, an internal 

force, to be considered as the relevant resultant and treated as a normally-distributed random 

variable, provides an offset from the rest position. Such an offset is actually found to depend on the 

variance of the stochastic Young’s modulus of the SVE, and not on its mean value. 
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