

4th International Electronic Conference on Medicinal Chemistry

1-30 November 2018 chaired by Dr. Jean Jacques Vanden Eynde

sponsored by
pharmaceuticals

Biological activity of two new imidazole-based Cu(II) Frameworks resulting from a one-pot reaction

Amani Direm ^{1,*}, Mohammed S. M. Abdelbaky ², Koray Sayı ³, Andrea Cornia ⁴, Olufunso Abosede ⁵, and Santiago García-Granda ²

¹ Laboratoire des Structures, Propriétés et Interactions Interatomiques LASPI2A, Département des Sciences de la Matière, Faculté des Sciences et de la Technologie, Université "Abbes Laghrour", Khenchela 40.000, Algeria;

² Departamento de Química Física y Analítica, Universidad de Oviedo – CINN, 33006 Oviedo, Spain;

³ Department of Chemistry, Faculty of Science, Cumhuriyet University 58140 Sivas, Turkey;

⁴ Dipartimento di Scienze Chimiche e Geologiche, Università di Modena e Reggio Emilia & INSTM, via G. Campi 103, 41125 Modena, Italy;

⁵ Department of Chemistry, Federal University Otuoke, P.M.B 126, Yenagoa, Bayelsa State, Nigeria.

LASPI²A

* Corresponding author: Amani_Direm@yahoo.fr

Biological activity of two new imidazole-based Cu(II) Frameworks resulting from a one-pot reaction

Graphical Abstract

4th International Electronic Conference on Medicinal Chemistry 1-30 November 2018

Abstract:

Two new penta-coordinated copper(II) complexes with mixed-ligands, namely: imidazole and citric acid have been synthesized and obtained from a one-pot reaction. The biological screening of the resulting compounds has shown that they could be considered as promising materials with interesting antimicrobial and antifungal inhibition activities. Moreover, the obtained biological results have been confirmed by undertaking chemical reactivity calculations.

Keywords: Imidazole-based complexes, Cu(II) frameworks, one-pot synthesis, abinitio calculations, biological properties

Introduction

Imidazole occurs in most proteins as part of the side chain of histidine and constitutes a binding site for various transition metal ions in a large number of metalloproteins [1]. Consequently, the bonding between imidazole and transition metal ions is widely known [2] and of considerable interest especially in biological systems [3,4]. Consequently, copper(II)–imidazole systems with different ratios of imidazole to copper have been prepared and investigated by several researchers [5]. Moreover, being studied as models for copper proteins that contain both functionalities in the side chain [6], some mononuclear copper(II)–imidazole

complexes with carboxylate ligands have been found to display a variety of pharmacological effects, including antitumor [7], superoxide dismutase and catecholase activities [8].

Introduction

In order to contribute to the study of these systems, we have synthesized two new penta-coordinated copper(II) complexes with mixed-ligands, namely: imidazole and citric acid. The resulting compounds have shown remarkable antimicrobial and antifungal inhibition activities, which have been predicted by exploring the computational chemical reactivity of the two complexes [9].

J. Reedijk & E. Bouwman, Bioinorganic Catalysis, Marcel Dekker Inc., New York & Basel, 1999. [2] K. D. Karlin & Z. Tyeklar, Bioinorganic Chemistry of Copper, Chapman & Hall, New York, 1993. [3] E. Colacio, M. Ghazi, R. Kivekäs, M. Klinga, F. Lloret & J. M. Moreno, Inorg. Chem, 2000, 39(13), 2770–2776. [4] M. T. Caudle, J. W. Kampf, M. L. Kirk, P. G. Rasmussen & V. L. Pecoraro, J. Am. Chem. Soc, 1997, 119(39), 9297–9298. [5] (a) S. M. Morehouse, A. Polychronopoulou & G. J. B. Williams, Inorg. Chem, 1980, 19(12), 3558–3561. (b) G. Fransson & B. K. S. Lundberg, Acta Chem. Scand. A, 1974, 28(5), 578–588. (c) D. L. McFadden, A. T. McPhail, C. D. Garner & F. E. Mabbs, J. Chem. Soc., Dalton Trans, 1976, 47–52. [6] H. Beinert, Coord. Chem. Rev, 1980, 33, 55. [7] J. R. J. Sorrenson, Prog. Med. Chem, 1989, 26, 437. (and references therein). [8] A. L. Abuhijleh & C. Woods, Inorg. Chim. Acta, 1993, 209, 187. [9] Direm, A. Abdelbaky, M. S. M. Sayın, K. Cornia, A. Abosede, O. & García-Granda, S. (2018). Inorg. Chim. Acta. 478. 59–70. and references therein.

4th International Electronic Conference on Medicinal Chemistry 1-30 November 2018

One-pot reaction

FTIR spectroscopy

Crystal structures and Hydrogen bonds

on Medicinal Chemistry 1-30 November 2018,

sponsors:

Crystal structures and Hydrogen bonds

Biological activity

Each complex was tested for its in-vitro antibacterial activity against *Staphylococcus aureus* and *Escherichia coli* as examples of Gram-positive bacteria and Gram-negative bacteria, respectively.

Furthermore, both complexes were screened against two fungi, namely *Candida specie* and *Aspergillus niger*.

Biological activity

	Complex (1)		Complex (2)		
	C ₁ = 10 mg⋅mL ⁻¹	C ₂ = 20 mg⋅mL ⁻¹	C ₁ = 10 mg⋅mL ⁻¹	$C_2 = 20 \text{ mg} \cdot \text{mL}^{-1}$	
Staphylococcus aureus	15	18	18	21	
Escherichia coli	NE	10	NE	NE	
Candida specie	10	13	16	21	
Aspergillus niger	15	18	20	23	

Biological activity

On the basis of the minimum inhibitory concentration (M.I.C) and the diameter of the inhibition zone, complex (**1**) showed higher fungicidal activity against *Aspergillus niger* (15 mm at 10 mg·mL-1) compared to its inhibition of *Candida specie* (10 mm at 10 mg·mL-1).

The same behavior was observed for complex (2) but with higher response (20 mm at 10 mg·mL-1 for *Aspergillus niger* vs. 16 mm at 10 mg·mL-1 for *Candida specie*).

Biological activity

Moreover, both complexes were found to have high activity against *Staphylococcus aureus* (15 mm for complex (1) and 18 mm for complex (2), at 10 mg·mL-1). Significantly, antibacterial activity of complex (1) against *Escherichia coli* was observed to be significant (10 mm at 20 mg·mL-1) compared to complex (2), which showed no effect on the same bacteria.

Biological activity

Complex (2) has the additional advantage of combining the free ligand and the coordinated-ligand molecule in its structure, resulting in a more potent antifungal and antibacterial activity compared to complex (1).

Biological activity

Significantly, the calculated electronic structure descriptors indeed predict a greater chemical reactivity for (2) than for (1).

	E _{SOMO} (eV)	σ (eV-1)	μ (Debye)	α (a.u)	β (a.u)
Complex (1)	-8.857	0.167	12.955	189.785	106.681
Complex (2)	-4.611	0.224	30.660	152.778	353.385

pharmaceuticals

Biological activity

Chemical reactivity increases with the increase of E_{SOMO} , σ , μ , α and β . As a result, chemical reactivity ranking should be as follow:

Complex (2) > Complex (1) (in E_{SOMO} , σ , μ and β) Complex (1) > Complex (2) (in α)

Biological activity

On the other hand, the chemical reactivity increases with decreasing E_{LUMO} , E_{GAP} and η . According to these parameters, the chemical reactivity ranking should be as follow: Complex (**2**) > Complex (**1**) (in E_{GAP} and η) Complex (**1**) > Complex (**2**) (in E_{LUMO})

	E _{LUMO} (eV)	E _{GAP} (eV)	η (eV)	
Complex (1)	3.088	11.945	5.972	
Complex (2)	4.311	8.922	4.461	

And thus, complex (2) is more reactive than complex (1).

Conclusions

Two newly synthesized copper (II) complexes based on imidazole and citrate ligands were prepared from a one-pot synthesis and characterized by FTIR spectroscopy and single-crystal X-ray diffraction, which showed the presence of an extensive 3D propagating frameworks as a result of strong and moderate O–H...O and N–H...O hydrogen-bonds.

The antimicrobial screening suggested that the obtained complexes are promising against *Staphylococcus aureus*, though only complex (**1**) was found to be effective against *Escherichia coli*. Furthermore, (**1**) and (**2**) showed significant fungicidal activity against *Aspergillus niger* and *Candida specie*. However, (**2**) displayed higher activity compared to (**1**), this behavior was predicted by exploring the computational chemical reactivity of the two complexes.

Acknowledgments

Université Abbes Laghrour Khenchela, Algeria

TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA Resources, Turkey)

Spanish MINECO (MAT2016-78155-C2-1-R, MAT2013-40950-R, and FPI grant BES-2011-046948)

Gobierno del Principado de Asturias (GRUPIN14-060) and FEDER

