EFFICIENCY ANALYSIS OF PHOTOVOLTAIC SYSTEMS FOR CARBON FOOTPRINT REDUCTION

Hossein Jahankhani Amin Hosseinian Far

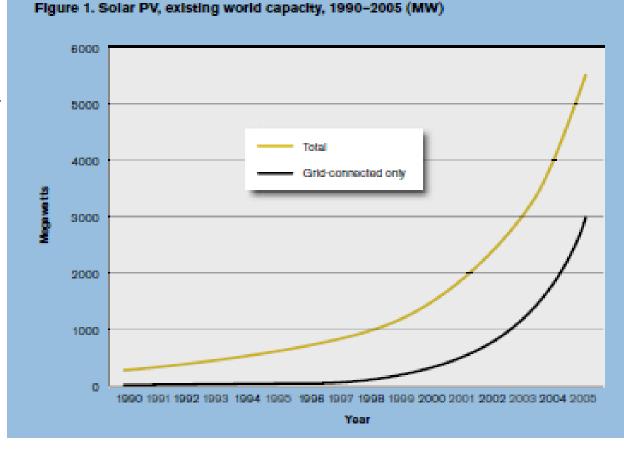
SUMMARY

- Introduction
- Renewable Energy Technologies
- Solar Technologies
- PV
- RETScreen for Energy Model calculations
- Emission Analysis
- Conclusion
- Key References

INTRODUCTION

- Energy is crucial to all aspect of human life
- Climate Change has caused many issues
- The latest world energy council study demonstrates that there will be no revolution in existing energy production, and also by 2020 the request of energy would be increased roughly 50%-80% in compared to 1990 baseline
- Today the Result of evaluation of energy consumption is 22,109 kW h per year
- Upgrading and emphasizing the renewable energy market will be a factor for ecosystem endurance by decreasing the emission in general

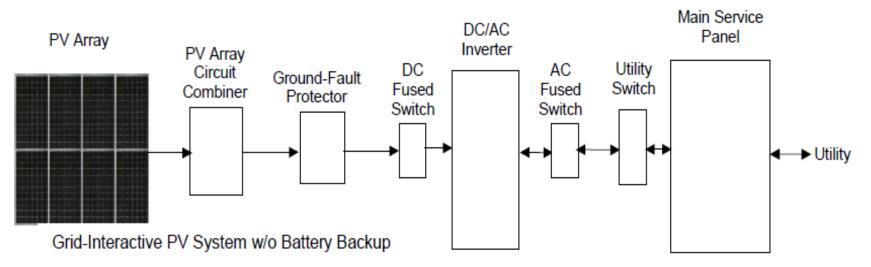
RENEWABLE ENERGY TECHNOLOGIES


- Solar
- Hydropower
- Geothermal
- Biomass
- Etc.

There are various debates on Nuclear energy and its consequent probable environmental issues

SOLAR TECHNOLOGIES

• Categorized into two major technologies:


-Photovoltaic -Solar Thermal

PHOTOVOLTAIC

Today, Photovoltaic is the most common application which is measure as the sustainable energy producer

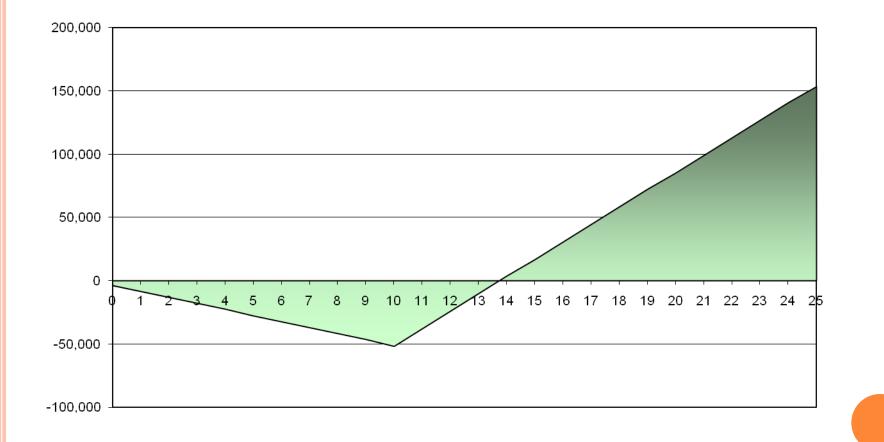
The standard PV solar silicon is made of two layers: phosphorus-doped (N-type) and boron-doped (P-type)

RETSCREEN FOR ENERGY MODEL CALCULATIONS

RETScreen

RETScreen Financial Analysis - Heatir	ng project									
inancial parameters			Project costs and savings/in	come summa	iry		Yearly	cash flows		
Seneral			Initial costs				Year	Pre-tax	After-tax	Cumui
Fuel cost escalation rate	%	2.5%	Feasibility study	1.0%	\$	5,000	+	\$	\$	
Inflation rate	%	2.5%	Development	2.1%	\$	10,000	0	-47,798	-47,798	
Discount rate	96	12.0%	Engineering	5.2%	\$	25,000	1	17,154	17,154	
Project life	yr	25					2	18,525	18,525	
-	-		Heating system	76.3%	\$	364,684	3	19,929	19,929	
inance							4	21,369	21,369	
Incentives and grants	\$						5	22,844	22,844	
Debt ratio	%	90.0%					6	18,197	18,197	
	ŝ	430,179	Delagan of putters 4 mins	15.3%	\$	70.000	7			
Debt			Balance of system & misc.			73,292		16,181	16,181	
Equity	\$	47,798	Total initial costs	100.0%	\$	477,976	8	21,336	21,336	
Debt interest rate	%	B.00%					9	22,965	22,965	
Debt term	ye	20					10	24,634	24,634	
Debt payments	\$Ayr	43,815					11	26,346	26,346	
			Annual costs and debt paym	ents			12	28,100	28,100	
			08M		\$	14,037	13	29,897	29,897	
ncome tax analysis		R	Fuel cost - proposed case		\$	4,805	14	27,501	27,501	
Effective income tax rate	96		Debt payments - 20 yrs		\$	43,815	15	33,629	33,629	
Loss carryforward?		No	Total annual costs		\$	62,657	16	35,565	35,565	
Depreciation method		Declining balance	rotar menual costs		+		17	37,550	37,550	
Half-year rule - year 1	yes/na	Yes	Periodic costs (credits)				18	39,584	39,584	
	96541M	165			\$	3,000	19	41,689	41,669	
Depreciation tax basis			User-defined - 7 yrs		*	3,000				
Deprectation rate	%						20	43,806	43,606	
							21	84,772	84,772	
Taxholiday available?	yes/na	No					22	92,056	92,056	
			Annual savings and income				23	94,358	94,358	
			Fuel cost - base case		\$	72,314	24	96,717	96,717	
unnual income							25	99,135	99,135	
Sectricity export income			GHG reduction income - 5 yrs		\$	6,160				
			Total annual savings and in	come	\$	78,474				
HG reduction income		R								
Net GHG reduction	tCO2/vr	411	Financial viability							
Net GHG reduction - 25 yrs	tCO2	10.267	Pre-tax IRR - equity		~	40.8%				
GHG reduction credit rate	\$4002	15.00	Pre-tax IRR - assets		ŝ.	4.8%				
GHG reduction income	\$	6,160	The second contractor		~					
GHG reduction credit duration	yr.	0,100	After-tax/IRR - equity		8	40.8%				
Net GHG reduction - 5 yrs	1002	2,053	After-tax IRR - assets		ŝ.	40.8%				
		2,053	PATEL-TRY INDE - 932913		79	4.0%				
GHG reduction credit escalation rate	%		Disasta ana kasata							
			Simple payback		ут	8.0				
customer premium income (rebate)		1.2	Equity payback		W.	2.6	1			

www.retscreen.net


ASSUMPTIONS

• In order to assess the installed array's power cost on a per kWh basis, several parameters need to be defined:

Parameter	Value
Solar Tracking Mode	Fixed
Project Life	25 years
Efficiency	12%
Misc Losses	1.0%
Feed in Tariff	0.365 £/kWh
Inverter Efficiency	90%
Capacity Factor	14.6%
Total Electricity Exported	0
Annual O&M Costs	500£
Debt Amount	113,957£
Debt Term	10 years
Debt Interest rate	10%

CASE STUDY RESULTS

- University of East London Library Rooftop
- The energy model has calculated overall annual output of around 32MWh
- with a breakeven point (assuming Feed in Tariffs at 36.5p and savings of 7p/kWh) for 13 years after a 30% capital costs grant with debt covering the remainder at 10% over a 10 ten year period
- The annual return is 2.5% based on total capital cost, or 3.2% based on whole minus the grant, through the original project plan to a cumulative cash flow of £150,000 by the 25th year

EMISSION ANALYSIS

• The greenhouse gas analysis currently yields annual savings of 18.2tons of CO2 based on the UK's average CO2 emissions of 465kg/MWh with 1% accounting for Distribution losses.

HG emission reduction summary							
		Base case GHG emission	Proposed case GHG emission				
	Years of occurrence	e					
	yr	tCO2	tCO2				
Power project	1 to -1	14.9	0				
emission	reduction 1	14.9 t	CO2	is equivalent to	2.7		

CONCLUSION

- Based on this literature about diverse renewable knowledge's and particularly solar, a completely full life cycle evaluation of solar PVs would be useful to reduce the unclear application
- The major comparative concern emphasized throughout the PV array's analysis was its unexpectedly low down capacity factor
- The sum primary capital invested, which is enhanced to 3.2% by the decline of the grant sum from the entirety initial cost

KEY REFERENCES

• HM Treasury. (2009). Green Book Complete. Retrieved December 5, 2009, from HM Treasury: http://www.hm-

treasury.gov.uk/d/green_book_complete.pdf

- Hosseinian-Far, A. Jahankhani, H. Pimenidis, E. & Wijeyesekara, D.C. (2010) Modeling of Sustainable Projects: A Solar Energy Review. Energy in the City Conference, South-Bank University, London.
- IEA. (1993). WORLD ENERGY MODEL -METHODOLOGY AND assumption. Retrieved from http://www.worldenergyoutlook.org: http://www.worldenergyoutlook.org/docs/annex_c. pdf

Thank You