

MOL2NET, International Conference Series on Multidisciplinary Sciences

Idealized correlations: prediction of solubility of fullerene in organic solvents

Alla P. Toropova^{*}, Andrey A. Toropov, Emilio Benfenati

Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156, Via La Masa 19, Milano, Italy

*To whom correspondence should be addressed: E-mail: alla.toropova@marionegri.it Tel: +39 02 3901 4595 Fax: +3902 3901 4735 (APT).

Introduction

Physicochemical properties of nanomaterials is important information for chemical industry, biochemistry, and medicine. Solution of fullerene in any solvent factually is a Nano-object. Consequently, the development of predictive models for solubility of fullerene in organic solvents is an actual task of modern natural sciences as well as an actual task of nanotechnology [1-5].

The Index of Ideality of Correlation (IIC) has been suggested recently as a tool to improve predictive potential for quantitative structure – property / activity relationships (QSPRs/QSARs) [6, 7]. The aim of the present study to compare the QSPR models for fullerene solubility in different solvents, which are obtained with applying of the *IIC* and models obtained without *IIC*.

Materials and Methods Data.

The experimental data on the fullerene solubility (logS) are taken in the literature [8]. Four solvents have undefined values (logS<-8). These solvents were removed from consideration, consequently 128 solvents are examined here. The total data (n=128) were randomly split into the training, invisible training, calibration, and validation sets. Each set has special task:

1. The training set is 'builder' of the model. Compounds from this set are basis to obtain the correlation weights, which give maximal value of target function;

2. The invisible training set is inspector' of the model. Compounds of this set are basis to check up: whether the model is satisfactory for substances, which are not involved into the Monte Carlo optimization;

3. The calibration set is 'estimator' of the model; and the task of this set is to detect start of the overtraining; and

4. Finally, there is the validation set: these substances are the basis of final checking up of the predictive potential of the model.

Optimal descriptor

The optimal descriptor is a mathematical function of simplified molecular input line-entry system (SMILES) [10]. The SMILES contains a group of SMILES-atom. The SMILES-atom can be one character or two characters, which cannot be examined separately (e.g. 'Cl', 'Br', etc.).

$$DCW(T^*, N^*) = \sum_{k=1}^{NA} CW(S_k) + \sum_{k=1}^{NA-1} CW(SS_k)$$
(1)

The descriptor is calculated with so-called correlation weights, i.e. coefficients which calculated by the Monte Carlo method by algorithm described below. The Sk is the SMILES-atom. The SSk is a pair of SMILES atoms which are neighbors in the SMILES notation. The NA is the number of SMILES-atoms for a given SMILES [9]. The Sk and SSk are SMILES attributes. The Monte Carlo method gives model that is one variable correlation:

$$Solubility \ C60 = \ C_0 + C_1 \times DCW(T^*, N^*)$$
(2)

The CW(S_k) and CW(SS_k) are the above-mentioned correlation weights for the above-mentioned SMILES-attributes. The correlation weights are special coefficient calculated with the Monte Carlo method. The numerical data on the correlation weights should provide maximal value of a target function (*TF*) calculated as the following:

$$TF = R_{training} + R_{invisible-training} - \left| R_{training} + R_{invisible-training} \right| \times 0.1$$
(3)

Recently, the modified target function that improves QSPR/QSAR models based on the traditional correlation has been suggested. The Index of Ideality of Correlation (*IIC*) [9] is additional component of the function:

$$TF_m = TF + IIC \times 0.1 \tag{4}$$

The *IIC* can be qualified as a criterion to estimate statistical quality of a model. The scheme to calculate *IIC* is the following.

$$delta_{k} = observed_{k} - calculated_{k}$$

The *observed*^k and *calculated*^k are values of an endpoint.

Having data on all $delta_k$ for the calibration set, one can calculate sum of negative and positive values of $delta_k$ similar to mean absolute error (MAE):

(5)

$$^{-}MAE_{calibration} = \frac{1}{^{-}N} \sum_{k=1}^{N} |delta_{k}| \quad delta_{k} < 0, \ ^{-}N \text{ is the number of } delta_{k} < 0 \tag{6}$$

$${}^{+}MAE_{calibration} = \frac{1}{{}^{+}N} \sum_{k=1}^{{}^{+}N} |delta_{k}| \quad delta_{k} \ge 0, {}^{+}N \text{ is the number of } delta_{k} \ge 0$$
(7)

$$IIC = r_{calibration} \times \frac{\min(MAE_{calibration}, MAE_{calibration})}{\max(MAE_{calibration}, MAE_{calibration})}$$
(8)

The *IIC* can be calculated for training, invisible training, and validation sets, but the key role for the index is improving of the predictive potential of a model is related to the calibration set. The *T* is threshold to discriminate SMILES-atoms into two classes (i) rare, which is noise and should be removed from building up a model, and (ii) not zero, which are basis to build up the model. The *N* is the

removed from building up a model; and (ii) not rare, which are basis to build up the model. The *N* is the number of epochs of the Monte Carlo optimization. The $T=T^*$ and $N=N^*$ are values of the parameters which gives the best results for the calibration set.

Results and Discussion

Table 1 contains statistical quality of models for fullerene solubility build up with target function TF calculated with Eq. 3 and TFm calculated with Eq. 4. Factually, data from Table 1 confirms that the IIC improves the predictive potential of the model for fullerene solubility. The similar situation was described for models of mutagenicity [6] and for models of skin permeability [7].

The statistical quality of prediction for the model of solubility of fullerene in organic solvents that is suggested in the literature [8] is the following: n=28, r^2 =0.804, RMSE=0.386. In other words, models (obtained with applying the *IIC*) represented in Table 1 have comparable, or even better, predictive potential.

[Table 1 around here]

Conclusions

The applying of the *IIC* as addition component of the target function for the Monte Carlo optimization is considerable improves the predictive potential of the model based on the optimal SMILES-based descriptors calculated with the CORAL software (http://www.insilico.eu/coral).

Acknowledgments

Authors thank the project LIFE-CONCERT contract (LIFE17 GIE/IT/000461) for financially supported.

References

1. Barzegar, A.; Jafari Mousavi, S.; Hamidi, H.; Sadeghi, M. 2D-QSAR study of fullerene nanostructure derivatives as potent HIV-1 protease inhibitors. *Physica E: Low-Dimens. Syst. Nanostruct.* **2017**, *93*, 324-331.

2. Hassanzadeh, Z.; Ghavami, R.; Kompany-Zareh, M. Radial basis function neural networks based on the projection pursuit and principal component analysis approaches: QSAR analysis of fullerene [C60]-based HIV-1 PR inhibitors. *Med. Chem. Res.* **2016**, *25* (*1*), 19-29.

3. Kleandrova, V.V.; Luan, F.; Speck-Planche, A.; Cordeiro, M.N.D.S. In silico assessment of the acute toxicity of chemicals: Recent advances and new model for multitasking prediction of toxic effect. *Mini-Rev. Med. Chem.* **2015**, *15* (8), 677-686.

4. Singh, K.P.; Gupta, S. Nano-QSAR modeling for predicting biological activity of diverse nanomaterials. *RSC Advanc.* **2014**, *4* (26), 13215-13230.

5. Ghasemi, J.B.; Salahinejad, M.; Rofouei, M.K. Alignment independent 3D-QSAR modeling of fullerene (C 60) solubility in different organic solvents. *Fuller. Nanotub. Car. N.* **2013**, *21* (5), 367-380.

6. Toropov, A.A.; Toropova, A.P. The index of ideality of correlation: A criterion of predictive potential of QSPR/QSAR models? *Mutat. Res-Gen. Tox. En.* **2017**, *819*, 31-37.

7. Toropova, A.P.; Toropov, A.A. The index of ideality of correlation: A criterion of predictability of QSAR models for skin permeability? *Sci. Tot. Environ.* **2017** *586*, 466-472.

8. Ghasemi, J.B.; Salahinejad, M.; Rofouei, M.K. Alignment independent 3D-QSAR modeling of fullerene (C 60) solubility in different organic solvents. *Fuller. Nanotub. Car. N.* **2013**, *21* (5), 367-380.

9. Toropov, A.A.; Toropova, A.P.; Benfenati, E.; Salmona, M. Mutagenicity, anticancer activity and blood brain barrier: similarity and dissimilarity of molecular alerts. *Toxicol. Mech. Method.* **2018**, *28* (5), 321-327.

10. Weininger, D. SMILES a chemical language and information system. 1. Introduction to methodology and encoding rules. *J. Chem. Inf. Comput. Sci.* **1988**, *28*, 31-36.

Table 4

Statistical characteristics of models for solubility of fullerene C60 in different solvents

Split	Target	Set	n*	r ²	IIC	CCC	Q^2	RMSE
	function							
#1	TF	Training	33	0.9022		0.9486	0.8932	0.385
		Invisible training	32	0.8306		0.8763	0.8108	0.677
		Calibration	32	0.7771	0.6376	0.8094	0.7513	0.658
		Validation	31	0.8231				0.507
	TF_m	Training	33	0.7550		0.8604	0.7206	0.610
		Invisible training	32	0.7577		0.8348	0.7246	0.731
		Calibration	32	0.8671	0.7465	0.9166	0.8482	0.357
		Validation	31	0.8280				0.356
#2	TF	Training	32	0.8435		0.9151	0.8284	0.450
		Invisible training	32	0.8400		0.8458	0.8235	0.697
		Calibration	33	0.7471	0.6343	0.8588	0.7071	0.462
		Validation	31	0.8436				0.396
	TF_m	Training	32	0.8195		0.9008	0.7980	0.484
		Invisible training	32	0.7548		0.8534	0.7281	0.734
		Calibration	33	0.8306	0.8009	0.9110	0.7917	0.387
		Validation	31	0.8713				0.348
#3	TF	Training	31	0.8429		0.9148	0.8219	0.553
		Invisible training	32	0.8401		0.6400	0.8150	0.801
		Calibration	32	0.6632	0.4648	0.8129	0.6250	0.624
		Validation	33	0.7725				0.618
	TF_m	Training	31	0.8140		0.8975	0.7888	0.601
		Invisible training	32	0.7062		0.6998	0.6474	0.768
		Calibration	32	0.8613	0.7727	0.9243	0.8367	0.383
		Validation	33	0.8810				0.410

^{*)} n = the number of solvents in a set; r^2 = determination coefficient; CCC = concordance correlation coefficient; q^2 = cross validated determination coefficient; RMSE = root mean squared error. Best models are indicated by bold.