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Abstract.   

 

 

Portfolio optimization is one of the most 

addressed areas in operational research, mainly 

because of its practical relevance and interesting 

theoretical challenges. Recently, Solares et al. 

(2018) have proposed using probabilistic 

confidence intervals as criteria to select the most 

convenient portfolio. An approach following this 

idea allows the investor to consider not only the 

expected impact of the portfolios but also the 

risk of not obtaining that expected impact. 

Moreover, it identifies the behavior of the 

investor in presence of risk and gives her/him 

support depending on her/his own preferences. 

 

On the other hand, there are situations where the 

investor is not satisfied with the knowledge 

provided by probabilistic information (e.g., such 

information is precarious or the investor gives 

importance to other information, such as 

financial data). In this case, the investor may be 

interested in considering many criteria in order 

to select the most convenient portfolio. 
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However, this is not a trivial task since the 

cognitive limitations make it very difficult for 

the investor to consistently select the best 

compromise in presence of many criteria. 

Bearing this in mind, Fernandez et al. (2018a) 

proposed an approach that aggregates the many 

criteria on the basis of the investor’s particular 

system of preferences producing a selective 

pressure towards the most preferred portfolio 

while the investor’s cognitive effort in the final 

selection is reduced. 

 

1. Introduction  

A problem faced by most organizations and individual investors is how to distribute a monetary 

amount among a set of investment objects in such a way as to maximize the impact on their objectives. 

The process of allocating resources maximizing the impact on the investor’s (decision maker, DM) 

objectives is known as Portfolio Optimization. 

Since the 1970s we have seen an accelerated evolution in several fields of science, such as finance, 

optimization and decision making. It is due to the evolution in these fields that various researchers 

have made significant advances in Information Theory, generating new products and financial 

services. However, there is still a collection of challenges that leads to an increasingly large number of 

papers that consider  

 multiple conflicting objectives, 

 analysis of the investment objects’ performances, 

 selection of the best investment objects, 

 risk management, 

 the specific risk behavior of the decision maker, and 

 the particular preferences of the decision maker. 

From all these objectives, the most outstanding one is maximization of the portfolio’s return/profit 

(Solares et al, 2018). The return of a given portfolio is the arithmetic difference between the buy-cost 

and the sell-cost of the portfolio. The maximization of the portfolio’s return is sometimes the only 

objective optimized during the allocation of resources; however, given the high complexity involved in 

the return’s forecasting procedure, many criteria (e.g., expected return, risk, so-called fundamental and 

technical analyses) usually underlie such objective. Here, we will describe two papers that address the 

latter situation; namely, Refs. (Solares et al, 2018) and (Fernandez et al, 2018a). 
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Note that depending on the context, for example if we just want to maximize the expected return, the 

Portfolio Optimization problem is easy to solve. We simply put as much money as possible into the 

highest (expected) returning investment object. The reason that there is much work on this subject is 

that there is a requirement to control risk, which is better achieved when supporting several investment 

objects. Therefore, distributing a monetary amount among a set of investment objects in order to 

maximize the impact on the investor’s objectives requires the estimation of the joint impact produced 

by the supported investment objects, as well as the joint risk of not achieving such impact. This is due 

to the concept of risk diversification. It is traditionally based on the idea that a portfolio’s (set of 

supported investment objects) riskiness depends on the correlation of its constituents, not only on the 

average riskiness of its separate holdings. Even when diversification is not too relevant in some 

scenarios (e.g., when the investment objects behave like certain so-called stable Paretian distributions; 

Fama, 1965), generally, most practitioners agree that a certain level of diversification is achievable 

(Fabozzi, 2007c). Thus, the idea of evaluating the distribution of resources in terms of portfolios is 

opposed to the belief that investors should invest in the (individual) investment objects that offer the 

highest future impact. Furthermore, we assume here that investment objects are correctly assessed and 

concentrate on how to select the best portfolio in terms of the investor’s preferences. Finally, it is 

important to highlight that even in presence of the same level of risk, two decision makers with 

different attitudes facing risk might have different levels of satisfaction. Hence, besides a risk measure, 

the approaches finding the best portfolios must incorporate the DM’s attitude in presence of risk during 

the Portfolio Optimization. 

Investors frequently use decision-aiding tools in order to obtain a set of portfolios representing, to a 

certain extent, the best feasible allocations of resources. But this does not solve the problem; the 

investor still must choose from among all these portfolios the one that represents the best compromise 

among the considered criteria. But, as reported by Miller (1956), this is not a trivial task since the 

cognitive limitations make it very difficult for the investor to consistently select the best compromise 

in the presence of many criteria. This becomes more complicated when she/he needs to make trade-

offs between risk and return. Consequently, a more convenient approach must be followed; the goal of 

such an approach must be to provide a minimal set of portfolios satisfying the investor’s preferences. 

The main objectives in Refs. (Solares et al, 2018) and (Fernandez et al, 2018a) are to present 

approaches capable to find the most satisfactory portfolio from the investor’s perspective when many 

objective functions are considered. In those works, the investor’s behavior facing risk, the estimations 

of the portfolios’ future returns, and the risk of not attaining those returns are all represented through 

probabilistic confidence intervals. The imperfect knowledge related to the subjectivity of the investor 

is modeled on the basis of Interval Theory and the interval-based outranking, allowing one to obtain an 

approximation to the investor’s preferences. These preferences are used by the authors’ approach to 
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perform an aggregation of all the criteria. Thus, a selective pressure towards the most preferred 

portfolio is produced, while the investor’s cognitive effort in the final selection is reduced. 

 

2. Materials and Methods 

 

2.1 Portfolio Optimization 

In this section, we formalize the definition of the Portfolio Optimization problem and, without loss of 

generality, we concentrate in the rest of the document in portfolios composed by stocks, a type of asset 

that represents partial ownership of a corporation. Let us assume that there are 𝑛 stocks (investment 

objects) where the investor can allocate a proportion of his/her resources. Let 𝑝0
𝑖 , 𝑝1

𝑖 , 𝑝2
𝑖 , ⋯ , 𝑝𝑇0

𝑖  be the 

historical prices of the 𝑖th stock in 𝑇0 + 1 periods of time. The 𝑇0  historical rate of returns (only 

returns in the following) of the stock are given by 𝑟𝑡
𝑖  =  (𝑝𝑡

𝑖 − 𝑝𝑡−1
𝑖 )/𝑝𝑡−1

𝑖 ;  𝑡 =  1, 2, ⋯ , 𝑇0. Here, a 

portfolio is a vector 𝑥 =  [𝑥1, 𝑥2, … , 𝑥𝑛]⊤ in decision space that specifies the proportions of money to 

invest in 𝑛 investment objects, such that 𝑥𝑖 is the proportion to invest in the 𝑖th object. The image of a 

portfolio in objective space is a real number that states the return produced by the portfolio, 𝑅(𝑥). It is 

widely accepted in the literature that the return produced by the portfolio 𝑥 can be obtained as (cf. 

Fabozzi et al., 2007): 

𝑅(𝑥) = ∑ 𝑥𝑖𝑟𝑇0+1
𝑖

𝑛

𝑖=1

. 

The issue that investors (Decision Makers) face with the previous definition is that it depends on the 

future returns of the stocks, 𝑟𝑇0+1
𝑖 , whose values are unknown. Thus, underlying criteria are used with 

the purpose of estimating such returns, creating the criteria space. The image of a portfolio in the 

criteria space is a vector that represents the impact of the portfolio on 𝑘 criteria. The portfolio problem 

is then to select the feasible portfolio that maximizes the impact on the criteria. Formally: 

 maximize
𝑥∈ Ω

(𝐼(𝑥) = {𝐼1(𝑥), 𝐼2(𝑥), ⋯ , 𝐼𝑘(𝑥)}), (1) 

where 𝐼𝑗(𝑥) is the impact of portfolio 𝑥 on criterion 𝑗 and Ω is the set of feasible portfolios (the set of 

portfolios that fulfill the decision maker’s constraints). 

 

2.2 Interval Theory 

The so-called Interval Theory was originated independently by Sunaga (1958) and Moore (1962). 

Interval Theory’s principal concept is the interval number. Such a number represents a numerical 

quantity whose exact value is unknown. Given this imperfect knowledge about the quantity, a range of 

numbers is used to encompass all the possible values that the quantity could obtain. In this way, an 

interval number stands for an indeterminate number that takes its possible value within a set of 

numbers. Let us consider the quantity 𝜄 whose real value lies between bounds 𝑖− and 𝑖+. The interval 
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number for such quantity is set then as 𝐼 = [𝑖−, 𝑖+]. We can also translate a real number, 𝑞, into an 

interval number as [𝑞, 𝑞]. 

In what follows, let us look at the basic operations of interval numbers. Given the interval numbers 

𝐼 = [𝑖−, 𝑖+] and 𝐽 = [𝑗−, 𝑗+], the following equations represent the addition, subtraction, multiplication 

and division, of 𝐼 and 𝐽, respectively. 

𝐼 + 𝐽 = [𝑖−  +  𝑗−, 𝑖+  +  𝑗+], 

 𝐼 − 𝐽 = [𝑖−  −  𝑗+, 𝑖+  −  𝑗−], 

𝐼 × 𝐽 = [min{𝑖− 𝑗−, 𝑖− 𝑗+, 𝑖+ 𝑗−, 𝑖+ 𝑗+} , max{𝑖− 𝑗−, 𝑖− 𝑗+, 𝑖+ 𝑗−, 𝑖+ 𝑗+}], 

 𝐼 ÷ 𝐽 = [𝑖−, 𝑖+] × [
1

𝑗−
,

1

𝑗+
]. 

More recently, Shi et al. (2005) proposed a way to determine the order of interval numbers. For 

instance, suppose we want to determine the order of 𝐼 = [𝑖−, 𝑖+] and 𝐽 = [𝑗−, 𝑗+]. First, we need to find 

the possibility of 𝐼 being greater than or equal to 𝐽. The possibility function proposed in (Shi et al., 

2005) is given by 

 

𝑝(𝐼 ≥ 𝐽) = {

1 if 𝑝{𝐼𝐽} > 1,         

𝑝{𝐼𝐽} if 0 ≤ 𝑝{𝐼𝐽} ≤ 1,

0 if 𝑝{𝐼𝐽} < 0.        

 

(2) 

Where 𝑝{𝐼𝐽} =
𝑖+− 𝑗−

(𝑖+− 𝑖−)+(𝑗+− 𝑗−)
 . 

Furthermore, if 𝑖+ = 𝑖−  and 𝑗+ = 𝑗−, then  

𝑝(𝐼 ≥ 𝐽) = {
1       if 𝐼 ≥ 𝐽,

     0      otherwise.
 

Let 𝑖 and 𝑗  be two currently undetermined realizations from 𝐼  and 𝐽 , respectively; 𝑝(𝐼 ≥  𝐽) can be 

interpreted as a degree of credibility of the statement “once both realizations are determined, 𝑖 will be 

greater than or equal to 𝑗”. This helps the DM to ensure the robustness of 𝐼 ≥  𝐽, that is, to have a 

strong belief on 𝐼 being not less than 𝐽 when they are instanced as real numbers (Fernandez et al., 

2018b). 

 

2.3 Handling uncertainty through confidence intervals in Portfolio Optimization 

Let 𝑅(𝑥) be a random variable that represents the return of portfolio 𝑥 and ℙ(𝜔) the probability that 

event 𝜔 will occur. Then, 𝜃𝛾(𝑥) = [𝛼, 𝛽]: ℙ(𝛼 ≤ 𝑅(𝑥) ≤ 𝛽) = 𝛾 is called confidence interval of the 

portfolio return; it is possible to consider multiple confidence intervals 𝜃𝛾𝑗
(𝑥). Furthermore, each 𝛾𝑗 is 

selected by the investor according to his/her own preferences. This allows one to incorporate his/her 

attitude facing risk in the following manner. First, suppose a highly risk-averse investor; such investor 

would feel more satisfied of making a decision based on intervals with a high probability of containing 

the actual return. That is, he/she considers more valuable the information about the worst scenarios that 

could happen when selecting a portfolio; thus, he/she would select high values for 𝛾𝑗  looking for 
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protection against those scenarios (see Figure 1(a) of Ref. (Solares et al., 2018)). On the other hand, if 

the investor is lowly risk-averse, he/she would prefer to make a decision based on intervals that tend to 

the expected return (see Figure 1(b) of Ref. (Solares et al., 2018)).  

Solares et al. (2018) propose to characterize the portfolios using confidence intervals as criteria 

underlying risky objectives. Hence, the best portfolio is the one that maximizes the set of confidence 

intervals whose probabilities of containing the portfolio return are given by the investor. It is important 

to note that the maximization referred to in that work is not necessarily related to the wideness of the 

intervals, but it is based on the possibility function defined in Equation (2). That is, portfolios with the 

rightmost confidence intervals are preferred. 

Each 𝜃𝛾𝑗
(𝑥)  is easily understandable even for an investor without a sophisticated technical 

preparation, since it represents the probability that the return of portfolio 𝑥 actually lies within the 

interval [𝛼𝑗 , 𝛽𝑗]. This is not the case if one considers the technical criteria used in the mean-variance 

approach (Markowitz, 1952) or higher statistical moments (Saranya, 2014; Scott, 1980; Dittmar,2002; 

Harvey, 2000). 

Moreover, the investor has the capability of defining as many criteria per objective as (s)he wishes; 

thus, the information describing the distribution is enough to satisfy his/her requirements. 

Nevertheless, we believe that no more than one or two criteria are sufficient to satisfy his/her 

requirements for information. This is because of the definition of each 𝜃𝛾𝑗
(𝑥) , which allows the 

approach to encompass multiple points of the probability distribution in a single criterion. That is, in a 

single criterion we know with a given probability that the portfolio’s return can be any of the values 

within the corresponding interval. This is not possible in point estimators, where the statistical 

information relies on only one point. In some approaches (see e.g., Greco et al., 2013; Markowitz, 

1952; Markowitz, 1968) each criterion represents a single point of the probability distribution, so a 

better description of the distribution requires a higher number of criteria. 

 

2.4 Considering the decision maker’s preferences to select the best portfolio in presence of many 

criteria 

As stated in the Introduction, there are situations addressing the Portfolio Optimization problem where 

many criteria are used to characterize the decision alternatives. Once these criteria are stated, the 

decision maker has the possibility to directly address the multi-criteria problem trying to arrive to its 

Pareto frontier. Of course, this does not solve the problem; rather, it is useful to find equivalent 

alternative solutions that are not inferior, the decision maker still needs to select what she/he considers 

the portfolio with the best compromise among the impacts on the criteria. Another option for the 

optimization procedure is to incorporate the decision maker’s preferences during the search, thus 

creating a pressure towards the decision maker’s region of interest within the Pareto frontier and, 

eventually, selecting the most preferred portfolio. 

http://sciforum.net/conference/mol2net-04


MOL2NET, 2018, 4, http://sciforum.net/conference/mol2net-04                                                         7 

 

The proposal presented in Ref. (Fernandez et al., 2018a) exploits the so-called interval-based 

outranking approach (cf. Fernandez et al., 2018b), a generalization of the outranking approach, in 

order to reproduce the decision maker’s system of preferences during the search of the most preferred 

portfolio. As in the classical version of the outranking approach, the one based on Interval Theory uses 

a set of numerical parameters to model the DM’s preferences. In addition to the former, the latter is 

able to denote the uncertainty involved in the decision maker’s system of preferences (cf. Roy, 2014 to 

see a discussion about this uncertainty) by assuming that some preference parameters are defined as 

interval numbers. The set of parameters, 𝒫 = {𝑤𝑗, 𝑣𝑗, 𝜆, 𝛽0}, 𝑗 = 1, ⋯ , 𝑘, used by the interval-based 

outranking approach is composed of a weight and a veto threshold for each criterion and two cutting 

levels that allow to determine if a crisp outranking relation between two decision alternatives holds. 

Following Refs. (Fernandez et al., 2010 and 2011), Fernandez et al. (2018a) use the interval-based 

outranking approach and a specification of Fuzzy Logic, the so-called Compensatory Fuzzy Logic 

based on the geometric mean (Espin et al., 2014), to define the non-outranked truth degree of portfolio 

𝑥.  

A high non-outranked truth degree indicates the lack of arguments to believe that there are better 

solutions than 𝑥 in a given set of portfolios. Thus, by maximizing it, the optimization procedure is 

actually increasing the decision maker’s satisfaction in the selected portfolio. 

On the other hand, a high non-outranked degree is a necessary condition to be the best compromise, 

but it is not sufficient. A solution may have a high non-outranked degree and be incomparable with all 

or many of the solutions in the known Pareto front. Positive arguments are required to affirm the 

superiority of 𝑥 over the other optimal solutions under consideration when they have the same non-

outranked degree. Thus, Fernandez et al. (2018a) propose to use the outranking net flow score (Fodor 

and Roubens, 1994), as a “tie-breaker measure” when two portfolios have the same non-outranked 

truth degree. 

 

Results and Conclusions  

Both Refs. (Solares et al., 2018) and (Fernandez et al., 2018a) assess the performances of their 

respective proposed approaches by simulating risk-averse investors interested in many criteria and 

using real historical data in the context of stock Portfolio Optimization. They contemplate the most 

turbulent and uncertain period of the stock-market in the last years within their experimentation, the 

crisis of years 2007-2009. Sufficient evidence was found there to argue that i) using confidence 

intervals to characterize portfolios was crucial for the proposed approaches to select the portfolios 

according to the investor’s behavior when facing risk, being conservative when such behavior is highly 

risk averse and taking good advantage of the uptrends when the behavior is lowly risk averse; ii) an 

optimization based on evolutionary algorithms and Interval Theory allowed the proposed approaches 

to outperform several important and well-established benchmarks; iii) Fernandez et al. (2018a) showed 
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that their proposed approach is capable to provide the investor with portfolios that, generally, satisfy 

more her/his preferences than other benchmarks, even when these preferences are ill-determined, 

imprecise, uncertain or arbitrary.  

The approach presented in (Fernandez et al., 2018a) is interesting since it looks for selecting the best 

portfolio considering the imperfect knowledge (in the sense of Roy et al., 2014) that characterizes the 

DM’s implicit model of preferences, performing a selective pressure towards the DM’s region of 

interest within the Pareto front; it allows to represent the DM’s conservatism in the presence of risk, 

the portfolios’ most probable returns and the risk of not attaining those returns. However, a direct 

elicitation of the parameter values representing the DM’s preferences is performed in (Fernandez et al., 

2018a). As raised by Mousseau and Slowinski (1998), it is often difficult for the DM to express 

specific values for the parameters of models representing his/her own preferences; this is true even 

when the parameters are defined as ranges of numbers. 

 

References  

Dittmar, R. F. (2002). Nonlinear Pricing Kernels, Kurtosis Preference, and Evidence from the Cross 

Section of Equity Returns. Journal of Finance 57: 369–403. 

Fabozzi, F. J., Kolm, P. N., Pachamanova, D. A., & Focardi, S. M. (2007c). Robust portfolio 

optimization and management. John Wiley & Sons. 

Fama, E. F. (1965). Portfolio analysis in a stable Paretian market. Management science, 11(3), 404-

419.  

Fernandez, E., Lopez, E., Bernal, S., Coello, C. A. C., & Navarro, J. (2010). Evolutionary 

multiobjective optimization using an outranking-based dominance generalization. Computers & 

Operations Research, 37(2), 390-395. 

Fernandez, E., and Navarro, J. (2011). A new approach to multi-criteria sorting based on fuzzy 

outranking relations: The THESEUS method. European Journal of Operational Research, 213(2), 405-

413.  

Fernandez, E., Navarro, J., Solares, E., & Coello, C. A. C. (2018a). A novel approach to select the best 

portfolio considering the preferences of the decision maker. Submitted to Swarm and Evolutionary 

Computation. 

Fernandez, E., Figueira, J. R., and Navarro, J. (2018b). An interval extension of the outranking 

approach and its application to multiple-criteria ordinal classification. Omega. 

Fodor, J., and Roubens. (1994). M. Fuzzy Preference Modelling and Multicriteria Decision Support. 

Kluwer, Dordrecht. 

Greco, S., Matarazzo, B., & Słowiński, R. (2013). Beyond Markowitz with multiple criteria decision 

aiding. Journal of Business Economics, 83(1), 29-60. 

http://sciforum.net/conference/mol2net-04


MOL2NET, 2018, 4, http://sciforum.net/conference/mol2net-04                                                         9 

 

Harvey, C. R., & Siddique, A. (2000). Conditional skewness in asset pricing tests. Journal of finance, 

1263-1295. 

Markowitz, H. (1952). Portfolio selection. The journal of finance, 7(1), 77-91. 

Markowitz, H. M. (1968). Portfolio selection: efficient diversification of investments (Vol. 16). Yale 

university press. 

Miller, G. A. (1956). The magical number seven, plus or minus two: some limits on our capacity for 

processing information. Psychological review, 63(2), 81. 

Moore, R.E. (1962): Interval Arithmetic and Automatic Error Analysis in Digital computing. Ph. D. 

Dissertation, Department of Mathematics, Stanford University, Stanford, CA, USA. 

Roy, B., Figueira, J. R., and Almeida-Dias, J. (2014). Discriminating thresholds as a tool to cope with 

imperfect knowledge in multiple criteria decision aiding: Theoretical results and practical issues. 

Omega, 43, 9-20. 

Saranya, K., & Prasanna, P. K. (2014). Portfolio Selection and Optimization with Higher Moments: 

Evidence from the Indian Stock Market. Asia-Pacific Financial Markets, 21(2), 133-149. 

Scott, R. C., & P. A. Horvath. (1980). On the Direction of Preference for Moments of Higher Order 

than the Variance. Journal of Finance 35: 915–919. 

Solares, E., Coello, C. A. C., Fernandez, E., & Navarro, J. (2018). Handling uncertainty through 

confidence intervals in portfolio optimization. Swarm and Evolutionary Computation. 

Sunaga, T. (1958). Theory of an Interval Algebra and its Applications to Numerical Analysis. RAAG 

Memoirs. 

http://sciforum.net/conference/mol2net-04

