

MOL2NET, International Conference Series on Multidisciplinary Sciences

Evolutionary variations in HLH domain modulates the fast inactivation phase in calcium selective TRP channels.

Lisandra Flores-Aldama^{*a,b*}, Kattina Zavala^{*c*}, Juan C Opazo^{*c*}, Daniel Bustos^{*d*}, Wendy Gonzalez^{*d,e*}, Sebastian Brauchi^{*a,e*}

^a Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile

^b Escuela de Graduados, Facultad de Ciencias, Universidad Austral de Chile

^c Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile

^d Center for Bioinformatics and Molecular Simulations (CBSM), Universidad de Talca.

^eMillennium Nucleus of Ion Channels-associated Diseases (MiNICAD)

Graphical Abstract	Abstract.
-	TRPV5 and TRPV6 are highly calcium
	selective channels from the Transient Receptor
Insert grafical abstract figure here	Potential (TRP) family ¹ . These channels are
	considered gatekeepers of epithelial calcium
	transport, essential for calcium homeostasis ¹ . A
	negative potentials, the channels exhibit a two
	phase calcium-dependent inactivation where the
	slow component is shared and determined by th
	binding of Ca ²⁺ -Calmodulin complex to the C
	terminal region of the channel ^(2,3) . In contrast
	the rapid phase of inactivation is independent of
	the calcium-Calmodulin complex and allow
	differentiating both channels from a functional
	point of view; while TRPV6 shows a very robus
	inactivation, at the same calcium concentration
	the inactivation of TRPV5 conductance
	modest ⁴ . The intracellular loop S2-S3 ⁵ an
	residues downstream the transmembran
	segment S6 ⁶ has been associated to th
	differences observed in the kinetics of the rapi
	phase of inactivation. However, the exact
	location of the putative calcium-binding site an
	the molecular mechanism governing this proces

phase.
affect the phenotype of the fast inactivation
related variations within the binding region
process. We conclude that subtle evolutionary-
modulator for the calcium-induced inactivation
confirming that the HLH sequence serves as
the phenotype of inactivation in these channels,
and patch clamp electrophysiology we reversed
channel. By means of site-directed mutagenesis
together three different portions of the folded
identify a putative calcium-binding site that put
Molecular dynamics simulations, allowed us to
domain acts as a fingerprinting in both channels.
Further sequence analysis unveiled that the HLH
HLH domain located at the N terminal region.
introducing the same set of mutations within a
more than once during evolution, naturally
genes encoding for these channels duplicates
reconstruction in vertebrates suggest that the
are not known. A thorough phylogenetic

Introduction (optional)

.

Materials and Methods (optional)

.

Results and Discussion (optional)

. .

Conclusions (optional)

- .
- .
- .

References (mandatory)

- 1. Dekker et al., Cell Calcium 33 (2003) :497-507.
- 2. De Groot et al., Mol. and Cell. Biol. 31 (2011): 2845–2853
- 3. Derler et al., J Physiol 577.1 (2006): 31–44
- 4. Hoenderop et al., Journal of Physiology 537.3 (2001): 747–761
- 5. Niulius et al.; J.Biol. Chem. (2002) 277:30852-30858
- 6. Suzuki et al., Biom. Bioph R.C. (2002) 91:278-285