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ABSTRACT 

 

Due to the enormous impact of the seismic activity and the need to deepen more in the detailed knowledge of its behavior, 

in this research work we describe an analysis of the multifractal nature of the magnitude, interdistance and interevent 

time series of the earthquakes that occurred in Ecuador, during the years 2011-2017, in the provinces of Manabí and 

Esmeraldas, which is an area with a high seismic activity. For this study we use the Multifractal Detrended Fluctuation 

Analysis or (MF-DFA), which allows the detection of multifractality in non-stationary series as well as a series of 

parameters of non-linear characterization. Analyzing the results, it´s revealed that the interevent time serie presents the 

higher degree of multifractality than the two previously mentioned; added to this that the Hurst exponent is in a non-

proportional function to (q), which is a weight value, and that indicates the multifractal behavior of the dynamics of the 

earthquakes analyzed in this work. A study is made of the statistical values resulting in each series and its relation is 

obtained according to the asymmetry (r), resulting in all the series skewed to the right, consistent with r > 1; this indicates 

that small variations in the series are more dominant than large fluctuations. 

 

Keywords: Fluctuation, magnitude, earthquake, seismic activity, multifractal, Hurst, Ecuador. 

mailto:z72cugud@uco.es%20/
mailto:jestevez@uco.es
mailto:es2gamaa@uco.es


          
          

 

1. Introduction 

 

As a product in the interaction between the continental and oceanic plates, subduction is activated, which is 

when a low density plate enters below the one that produces the highest density in a subduction zone, the plane of 

friction produced in earthquakes, volcanism, magmatism, origin fault systems and sutures. (Agustín Paladines & 

John Soto, 2010).  
 

This is why Ecuador is considered seismically active, during the last 110 years there have been earthquakes 

that have been studied for their magnitude and their origin, a clear example is the earthquake of Esmeraldas in 

1906, whose magnitude was 8.8 on the Richter scale and which has been one of the largest recorded in history. 

Earthquakes are natural catastrophes that can not be accurately predicted at present or avoided, which is why this 

research work focuses on previous data that serve as a basis for a map of susceptibility and demonstration of seismic 

scenarios, all this depending on of the land, geographical location, load on the ground, etc. Compaction, subsidence, 

liquefaction, landslides, settlements, cracks, balance, faults, cracks, etc.  

 

They are some of the effects of an earthquake and that are associated with shaking or vibrations (Sánchez, 

2000), all these damages can be estimated with probabilistic methods and therefore reduce their damage by 

reinforcing structures in common seismic zones or implementing safe zones within the reach of all the people that 

may be affected. 

 

This research work addresses the seismic hazard of the areas indicated above and determines the size of the 

forces or the set of deparadas actions that affect the soil in a specific place during future earthquakes and that, 

therefore, act on the constructions, which implies a possible production of damages or collateral effects, a very 

important factor to take into account is seismic irrigation, which is not more than the estimate of damages or 

expected losses, to cover the study and analysis that is explained later, the definition, generation and different 

parameters that must be taken into account in relation to earthquakes. 
 

2. Art State: Fractals 

 
The concept of "Fractal" was improved by Mandelbrot in 1975, refers to a geometric figure, basic structure, 

fragmented, repeated at different scales, that is, self-similar. Due to its irregular nature it does not allow it to be 

described in traditional geometrical terms. Taking this into account as an initial step, from the theoretical 

development of fractality, we could analyze many manifestations that presented chaos and order at the same time 

in their characteristics. Fractals became a set of new rules to know and describe nature. A different perspective of 

approach to reality (Mandelbrot, 1983). There are two types of fractals, the "ideal", which is a geometrical figure 

that mathematicians create by means of an iterative algorithm or repetitive rule that has a shape, either highly 

irregular, highly interrupted or fragmented, and remains so at any scale that observation occurs. Mathematical 

fractals fulfill the property of exact self-similarity. In addition to the "ideal" fractals, there is the "natural" fractal, 

this is an element of nature that can be described by fractal geometry. Earthquakes, mountains, the circulatory 

system, coastal lines or snowflakes are natural fractals. This representation is approximate, because the properties 

attributed to ideal fractal objects, such as infinite detail, have limits in the physical world. 

With the appearance and development of the computer, the graphic production of fractals that require highly 

complex calculations is possible. In this way, mathematicians and artists found a new means of expression and 

research.  

 

 



          
          

 

 

3. Data Source 

 

Data collection is the first step to perform an analysis of them, all data is provided by the Military Geographic 

Institute of Ecuador through a request for information from the author to this institution which has been given all 

values The results of the year 2011 and the year 2017 in all of Ecuador, after obtaining this information, a filter is 

made in the area of interest. 

It started with a data size equal to 2190 (Map 1) earthquakes produced between 2011 and 2017, of which 1020 

are used in this investigation, according to their coordinates they are positioned and selected. 

The data provided by the Military Geographic Institute of Ecuador are: 

- Date and hour 

- Deep 

-  Duration time 

- Coordenates  

- Magnitude 

 
Map 1: Total earthquakes in the study area 

The interevent series is determined by comparing each of the precise moments that an earthquake occurs, that 

is, it is the time difference between each of the earthquakes. As for the interdistance series, a similar analysis is 

carried out, determining each one of the coordinates in which each earthquake occurs, a distance difference is made. 

Subsequently each of the series is divided into sets (q) that takes positive and negative values, in this case 5 y -5. 

For an appropriate characterization of the selected provinces, the multifractal analysis has been carried out by 

means of the Rescaled Range analysis, which is defined below as well as other concepts and values of importance 

in this study. 

 

 

 



          
          

 

4. Metodology 

4.1. Multifractal Detrended Fluctuation Analysis or (MF-DFA) 

 

This method is described by (Kantelhradt, Zschiegner, & Koscielny-Bunde, 2002) and it is a general procedure 

consisting of five steps. When we start, we assume a series xk When starting we assume a series with a length N 

finite, which is a set of k- indexes with non-zero values of xk. The series is compact if the values xk = 0, that is, it is 

a negligible fraction compared to the total length of the series. For the null components of the series, values are not 

assigned to the index k. 

Step 1: The next profile to be analyzed is determined with the equation (1) 

𝑌(𝑖) ≡ ∑[𝑥𝑘 − 〈𝑥〉]

𝑖

𝑘=1

,            𝑖 = 1, … , 𝑁.  

(1) 

where <x> represents the arithmetic mean: 

〈𝑥〉 =
1

𝑁
∑ 𝑥(𝑘)

𝑁

𝑘=1

 

(2) 

The subtraction of the mean <x> is not mandatory since it will be eliminated later with the equation (2) 

 

- Step 2: Divide the obtained profile with the equation (1) in  𝑁𝑠 ≡ 𝑖𝑛𝑡 (𝑁
𝑠⁄ ), segments, these are not 

overlapping in length s. Because the length N of the series is not always a multiple of s, in order not to 

neglect the remaining interval of the end, the same procedure is repeated from the opposite side of the 

series. Thus, they are obtained 2𝑁𝑠 total segments. 

 

- Step 3: By adjusting the least squares, the local trend of each of the segments is determined 2𝑁𝑠. 

Subsequently, the covariance is calculated with the equation (2). 

 

𝐹2(𝑣, 𝑠) ≡
1

𝑠
∑{𝑌[(𝑣 − 1)𝑠 + 𝑖] − 𝑦𝑣(𝑖)}2

𝑠

𝑖=1

 

(3) 

for each of the segments 𝑣, 𝑣 =1,…, 𝑁𝑠 and also for   𝑣 = 𝑁𝑠 + 1, … , 2𝑁𝑠. The 𝑦𝑣(𝑖) value is a polynomial fit in 

the segment 𝑣-th. Depending on the order of polynomial adjustment (you can use linear, quadratic, cubic or higher-

order polynomials in the fitting procedure), the order m of the detrended fluctuation analysis is defined respectively 

(DFA) generalized (DFA1, DFA2, . . . ). 

 

𝐹2(𝑣, 𝑠) ≡
1

𝑠
∑{𝑌[(𝑁 − (𝑣 − 1)𝑠 + 𝑖] − 𝑦𝑣(𝑖)}2

𝑠

𝑖=1

 

(4) 

 



          
          

 

- Step 4: It is determined with the equation (5) the average of all the segments to obtain the function of the 

q-th order fluctuation. 

𝐹𝑞(𝑠) ≡ {
1

2𝑁𝑠
∑[𝐹2(𝑣, 𝑠)]

𝑞
2

2𝑁𝑠

𝑣=1

}

1
𝑞

 

 (5) 

 
where (q) can take any real value except zero. For different values for example q = 2, the scalar exponent h(2) 

provides information on the fluctuations of the data series. By repeating the process described above, the s time 

scales vary if the function 𝐹𝑞(𝑠) increases as s increases, it is also highlighted that 𝐹𝑞(𝑠) depends on the order m of 

the analysis DFA, this is defined as s ≥ m+2. 

 

- Step 5: Through the graphical representation in logarithmic scale of 𝐹𝑞(𝑠) in front s, the scalar behavior of 

the fluctuation function is determined for each value of q. The function 𝐹𝑞(𝑠) increases for large values of 

s, when the 𝑥𝑖 series presents a long-range correlation, this as a power law, represented in equation (6). 

 

𝐹𝑞(𝑠)~𝑠ℎ(𝑞) 

(6) 

In order to quantify the multifractal character in time series, the multifractal spectrum is used ƒ(𝛼) as a 

relationship between the generalized exponent of Hurst H(q)  and the classical exponent 𝜏 (q),  which is a scalar 

exponent of Renyi, when it depends linearly on q, the set is monofractal, otherwise the set is multifractal, to calculate 

this exponent the equation is used (7) 

 

𝜏 (𝑞) = 𝑞𝐻(𝑞) − 1 

(7) 

By Legendre transformation you get: 

 

𝛼 = 𝜏 (𝑞)    ƒ(𝛼) = 𝑞(𝛼) − 𝜏 (𝑞) 

(8) 

where 𝛼 is the Hölder exponent, and ƒ(𝛼) determines the dimension of the subsets of the series, which is based 

on 𝛼, the same that is an exponent that measures the strength of the multifractal structure (Kantelhradt et al., 2002). 

Broadly speaking, a small value of 𝛼 indicates indicates that the process loses a fine structure and that its appearance 

becomes more regular, but if the value is large, a complex structure is ensured. In that aspect it is possible to relate 

the Hurst exponent with 𝛼  in the equation (9). 

 

𝛼 = 𝐻(𝑞) + 𝑞𝐻´(𝑞) y        ƒ(𝛼) = 𝑞[𝛼 − 𝐻(𝑞)] + 1 

(9) 

Calculating a polynomial fit of the second order around the position of 𝛼 max o 𝛼0 the equation results (10). 

 

ƒ(𝛼) = 𝐴(𝛼 − 𝛼0)2 + 𝐵(𝛼 − 𝛼0) + 𝐶 



          
          

 

(10) 

where C is a constant equal to 1 and the coefficient B refers to the asymmetry of the multifractal spectrum, this 

is zero or equal to 0 for a symmetric spectrum, when it is higher than 0, the multifractal structure is quite solid; on 

the other hand, when it is less than 0, the multifractal structure is more regular and smooth, this indicates lower 

fractal exponents.  

 

5. Results and Discussion 

 

The first variable analyzed was magnitude (Figure 1). The Scaling function Fq is represented in Figure 1A for 

different q values, estimating de slope Hq. With the exception of some fluctuations, it can be seen that the 

fluctuation function Fq follows a linear trend, in logarithmic coordinates. Thus, we can identify in Figure 1B the 

generalized exponent of Hurst, H (q) with the slope, for each order of q, according to the potential law. The values 

given to (q) are -5 and 5, considering a set of events ranging from a scale of 5 to a total of N / 4 (N is the total value 

of our samples). According to Telesca & Lapenna (2006) the different slopes of the fluctuation curves indicate that 

the fluctuations of small and large events are scaled differently. 

Likewise, if we compare each of the figures 1A, 2A and 3A, we can differentiate that the result of the variable 

magnitude and interdistance are similar (almost parallel to each other) in comparison with the results of the 

interevent variable that has steeper slopes, resulting in a different and strongly dependent Hurst exponents of (q). 

 

 
Figure 1: Results from Multifractal Analysis of Magnitude 

Figures 1B, 2B and 3B relate each of the q values with its corresponding Hurst exponent for Magnitude, 

Interdistance and Interevent variables, respectively. As it can be observed, the less the value of (q) the greater the 

Hurst exponent and vice versa. There is a clarification regarding the curves: in the study of Interevent, a multifractal 

behavior was not detected in scales less than 32, because it has a linear curve by the massive exponent. 

 

 



          
          

 

Figure 2: Results from Multifractal Analysis of Interdistance 

 

In figures 1D, 2D and 3D the multifractal spectrum obtained by applying the Legendre transformation 

(Equation 8) is represented for each variable. The multifractal spectrum allows to describe qualitatively and 

quantitatively the multifractality of a time series considering its width (W), that determines the richness of the 

multifractal structure. 

 

 
Figure 3: Results from Multifractal Analysis of Interevent 

 

Regarding Hurst exponents (Hq), in the series of Magnitude a value for 𝐻2 = 0.78 was obtained, which indicates 

a persistence or the presence of a long-range correlation in the series, such that large values are preceded by the 

same type of values, as in the case of series of Interdistance (𝐻2 = 0.66).  However, Interevent series presents 𝐻2 = 

1.16 which indicates that the dynamics of this variable is fluctuating noise, that is, it is common in critical self-

similar systems. 

 
Magnitude         

Width Asymetry r Average h(q) St. Desv. h(q) Max. Delta. 

0.55 1.23 0.8283 0.1106 0.2396 

Interdistance Km         

Width Asmetry r Average h(q) St. Desv. h(q) Max. Delta. 

0.56 1.94 0.7649 0.1464 0.3579 

Interevent (min)         

Width Asymetry r Average h(q) St. Desv. h(q) Max. Delta. 

1.44 2.04 1.5562 0.5527 0.4584 
Table1: Characteristics parameters of Multifractal Spectrum 

 

Based on the above data and the table 1, it is determined that by comparing the three multifractional spectra 

(Figure 4), it is observed that the Interevent series is characterized by having a greater degree of multifractality than 

the other two series, and the series of Interdistance slightly presents a multifractality greater than the series of 

Magnitude. All series appear biased to the right, consistent with r> 1; this indicates that small variations in the series 

are more dominant than large fluctuations. It seems, also, that such dominance is more intense for the Interevent 

series than the other two series. 



          
          

 

 
Figure 4: Multifractal Spectrum of the three variables studied 

 

6. Conclusions 

 

- Due to its enormous importance and the need to deepen its knowledge was carried out a characterization 

by multifractal analysis of the seismic activity of the provinces of Esmeraldas and Manabí in Ecuador 

obtaining as a result the multifractality curves and each of the parameters with their respective Multifractal 

spectra. 

 

- The maximum and minimum delta parameters, asymmetry and width of the curves propose an analysis 

of the temporal evolution of the multifractality, that is, the studied seismic phenomenon is characterized 

by a dynamic change of heterogeneity towards homogeneity, from varying to becoming constant during 

the activation of the replica, being revealed by a loss of multifractality after a main event. 

 

- After this study, the results revealed a persistent behavior of the magnitude and series of Interdistance, 

while the Interevent series showed a behavior of fluctuating noise. 

 

- When determining a relationship between the resulting curves, all series appear biased to the right, 

consistent with r> 1; this indicates that small variations in the series are more dominant than large 

fluctuations. It seems, also, that such dominance is more intense for the Interevent series than the other 

two ones, due to the resulting values for each of the series and their respective exponent of Hurst. 
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