

5th International Electronic Conference on Medicinal Chemistry

1-30 November 2019 chaired by Dr. Jean Jacques Vanden Eynde

sponsored by
pharmaceuticals

Identification of a synthetic TLR4-agonistic peptide V77-E92 derived from breast-milk α_{s1} -casein

Thorsten Saenger ^{1,*}, Stefan Vordenbäumen ², Juliana Bertelsbeck ¹, Ellen Bleck ², Matthias Schneider ² and Joachim Jose ¹

¹ Westfälische Wilhelms-Universität, Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Correnstr. 48, 48149 Münster, Germany. ² Heinrich-Heine-Universität Düsseldorf, Universitätsklinikum, Poliklinik für Rheumatologie und Hiller Forschungszentrum Rheumatologie, Moorenstr. 5, 40225 Düsseldorf, Germany.

* Corresponding author: thorsten.saenger@uni-muenster.de

Westfälische Wilhelms-Universität Münster

HEINRICH HEINE

Identification of a synthetic TLR4-agonistic peptide V77-E92 derived from breast-milk α_{s1} -casein

Abstract: Breast-milk α_{s1} -casein was suggested as an agonist of the Toll-like receptor 4 (TLR4). Pathogen recognition receptor TLR4 responds to lipopolysaccharides and a wide range of molecules, from proteins to metal ions. In consequence, three criteria are required to validate agonists which directly activate TLR4 and exclude TLR4-agonisticity through contaminants. Recently, we demonstrated that α_{s1} -casein fulfilled two of these criteria. (i) α_{s1} -Casein required TLR4/MD2 complex as well as cofactor CD14 to induce IL-8 secretion *via* TLR4 and (ii) α_{s1} -casein bound TLR4, MD2 and CD14. Aim of this study was to (iii) identify a synthetic amino acid sequence derived from human α_{s1} -casein responsible for TLR4-agonistic effects.

For this, we analyzed the amino acid sequence (AAS) of α_{s1} -casein *in silico*. α_{s1} -Casein showed to be α -helical and was likely to be intrinsically disordered in the region corresponding to R¹⁶-K⁹⁹ of α_{s1} -casein. Six truncated variants of α_{s1} -casein coding for parts of the AAS were purified from *Escherichia coli*. These variants were tested for binding to HEK293 cells transfected with TLR4 (TLR4⁺) by flow cytometry and their induction of IL-8 secretion *via* TLR4. Variants of α_{s1} -casein truncated at the N-terminus (E³⁵-W¹⁸⁵, R⁵⁷-W¹⁸⁵, V⁷⁷-W¹⁸⁵) bound TLR4⁺ induced lower IL-8 secretion with less AAS (7.5 ng/ml, 4.8 ng/ml, 3.6 ng/ml). Variant corresponding to E⁹³-W¹⁸⁵ of α_{s1} -casein was neither binding TLR4⁺ nor inducing IL-8 secretion. Therefore, we postulated V⁷⁷-E⁹² derived from α_{s1} -casein, which induced an IL-8 secretion of 0.95 ng/ml. Hence, the third criteria of TLR4-agonists fulfilled and activation of TLR4 through contamination was excluded.

In conclusion, α_{s1} -casein was proofed as an agonist directly activating TLR4. This supported our postulate that α_{s1} -casein has at least two functions, a nutritional and an immune active one.

Keywords

Breast milk; human α_{s1} -casein; synthetic TLR4-agonistic peptide; inflammasome.

Human α_{s1} -casein

Expressed in:

- breast milk (functional food)
 - transport of molecules, minerals
 - induces life long lgG response
 - Peptides of α_{s1} casein bind opioid receptors
- Synovia of patients (RA / OA)
- Breast- and prostate cancer
- $\succ \alpha_{s1}$ -casein was investigated as TLR4-agonist

Two of three criteria were shown before (i) α_{s1} -casein required TLR4/MD2 for effects

- (ii) $\alpha_{_{S1}}\text{-}case in bound directly to TLR4 and cofactors MD2/CD14$
- (iii) ? Synthetic peptide of α_{S1} -casein induced effects via TLR4 ?

 $\alpha_{S1}\text{-casein}$

CD14 and CD64

pharmaceuticals

sponsors.

In silico predicted structure and in vitro analysis of α_{s1} -casein

Truncations of the amino acid sequence of α_{s1} -case were purified from *Escherichia coli*.

Are truncations of α_{s1} -casein binding to TLR4-transfected HEK293 cells?

N1 and N2 bound to cells with TLR4, N3 showed hints to bind these cells N4 was a non-binder of cells with TLR4.

Are truncations of α_{s1} -casein binding to HEK293 cells with TLR4 receptor?

- C1, C2 induced IL-8 secretion via TLR4
- N1-N3 induced IL-8 secretion via TLR4, but not N4
- > All induced IL-8 secretions were magnitudes lower than induced by α_{s1} -casein

Testing of synthetic peptide V77-E92 derived from amino acid sequence of α_{s1} -casein

Analysis of supernatants for IL-8

- Synthetic peptide V⁷⁷-E⁹² derived from α_{s1} -casein induced 100-times lower IL-8 secretion than α_{s1} -casein
- Control peptide V⁷⁷-A¹¹⁹ derived from α_{s1}-casein did not induce a significant IL-8 secretion

Conclusions

- α_{S1} -Casein is a true TLR4-agonist as the third criteria was evidenced here: Synthetic peptide V⁷⁷-E⁹² derived from the amino acid sequence of α_{S1} -casein was identified as TLR4-agonistic
- N-terminal amino acids $R^{16}-E^{92}$ of α_{S1} -casein participated in TLR4-binding

Acknowledgments

Thanks to all members of the Group of Joachim Jose

Financial support of Hiller Rheumatology Research Foundation and Hiller Research Center Rheumatology of Heinrich-Heine-University Düsseldorf

5th International Electronic Conference on Medicinal Chemistry 1-30 November 2019

sponsors:

pharmaceuticals