

5th International Electronic Conference on Medicinal Chemistry

1-30 November 2019 chaired by Dr. Jean Jacques Vanden Eynde

In the search of new xanthine oxidase inhibitors: 3-Phenylcoumarins versus 2-phenylbenzofurans

Benedetta Era¹, Giovanna L. Delogu¹, Francesca Pintus¹, Antonella Fais¹ and Maria J. Matos^{2,*}

¹ Department of Life and Environmental Sciences, University of Cagliari, 09042 Monserrato, Cagliari, Italy

² Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain

* Corresponding author: mariajoao.correiapinto@usc.es

FACULTADE DE FARMACIA

In the search of new xanthine oxidase inhibitors: 3-Phenylcoumarins versus 2-phenylbenzofurans

5th International Electronic Conference on Medicinal Chemistry 1-30 November 2019

pharmaceuticals

Abstract:

Xanthine oxidase (XO) is an enzyme that catalyzes the oxidation of hypoxanthine to xanthine, and this one to uric acid. This process reduces molecular oxygen to O_2^{-} . Hydroxyl free radicals and hydrogen peroxide, both of which are byproducts of XO activity, can caused oxidative stress in human cells. Overproduction of uric acid in the body leads to hyperuricemia, which is also linked with gout. Uric production in the body can be lowered by XO inhibitors. Inhibition of XO has also been proposed as a mechanism for improving cardiovascular health. Therefore, the search for new efficient XO inhibitors is an interesting topic in drug discovery.

3-Phenylcoumarins and 2-phenylbenzofurans are privileged scaffolds in Medicinal Chemistry. Their structural similarity makes them interesting molecules for a comparative work. Methoxy and nitro substituents were introduced in both scaffolds. A preliminary study gives some insights into the synthesis and biological activity of these molecules against this important target. In general, the studied 3-phenylcoumarins proved to be better XO inhibitors than the similarly substituted 2-phenylbenzofurans. Further studies are still needed to optimize the structure and increase the potential of these molecules as XO inhibitors for the treatment of gout.

Keywords: Xanthine oxidase inhibitors; 3-Phenylcoumarins; 2-Phenylbenzofurans.

5th International Electronic Conference on Medicinal Chemistry 1-30 November 2019

Results and discussion

Reagents and conditions: a) NaBH₄, EtOH, 0 °C to RT, ~ 2 h; b) PPh₃·HBr, CH₃CN, 82 °C, 2 h; c) DCC, DMSO, 110 °C, 24h; d) toluene, NEt₃, 110 °C, 2h.

Results and discussion

Compounds	Inhibitory activity (inhibition % ± SD)
1	75.4±0.2
2	19.2±0.7
3	76.6±1.6
4	85.1±3.2
5	40.4±4.0
6	22.5±1.2
7	26.3±3.6
8	*
9	36.5±0.9
10	NI
11	*
12	NI

Table 1. Inhibitory activity of 3-phenylcoumarins and 2-phenylbenzofurans against xanthine oxidase at 100 μM.

*At 100 μ M (highest concentration tested) the compounds precipitated. NI=No inhibition

Results and discussion

Physicochemical properties	Compound 4
miLogP	3.73
Polar surface area (Å2)	85.27
H-bond acceptor atoms	6
H-bond donor atoms	0
Volume	248.88
Rotatable bonds	3
Drug likeliness (Lipinski)	Yes

Table 2. Theoretical physicochemical properties of compound 4 calculated with *molinspiration*.

Conclusions

In summary, we investigated XO inhibitory activity of twelve compounds, and found eight active compounds, displaying three of them inhibitory activity above 75%, at 100 μ M. All the 3-phenylcoumarins proved to be active on the studied target. The most active molecule (compound 4) is a 3-phenylcoumarin bearing a nitro group at position 6 of the coumarin ring and a methoxy one in *para* position of the 3-phenyl ring. Our results highlighted a relationship between the scaffold, the nature of the substituents and their position within the scaffold, and XO inhibitory activity. Besides being the most promising compound against the enzyme, compound **4** also presented pharmacokinetics and drug-likeness characteristics that support it as a promising molecule for designing effective XO inhibitors.

Acknowledgments

FACULTADE DE FARMACIA

mariajoao.correiapinto@usc.es

5th International Electronic Conference on Medicinal Chemistry 1-30 November 2019

sponsors:

