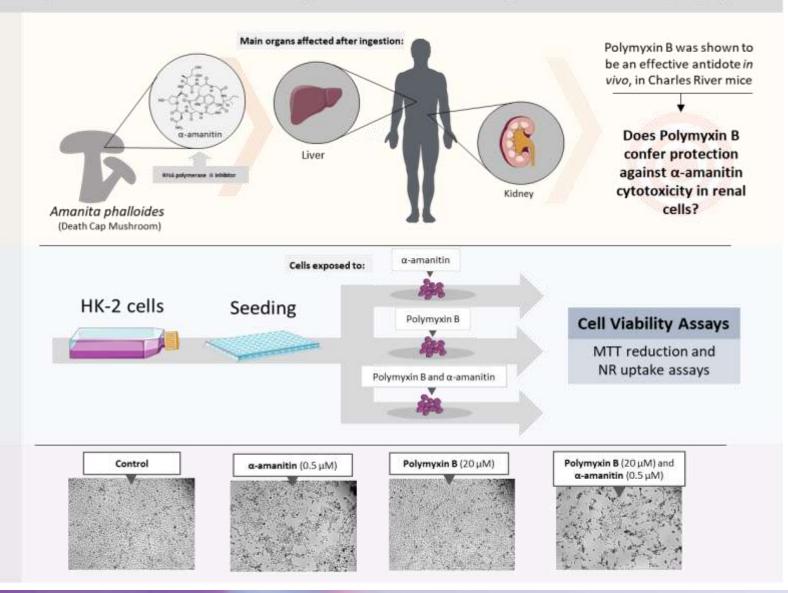


5th International Electronic Conference on Medicinal Chemistry

1-30 November 2019 chaired by Dr. Jean Jacques Vanden Eynde

In vitro toxicity of α -amanitin in human kidney cells and evaluation of protective effect of polymyxin B

Rui Malheiro ^{1,*}, Vera Marisa Costa ¹, Maria de Lourdes Bastos¹ and Félix Carvalho ¹


¹ UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal

* rui_malheiro@outlook.com

In vitro toxicity of α -amanitin in human kidney cells and evaluation of protective effect of polymyxin B

5th International Electronic Conference on Medicinal Chemistry 1-30 November 2019

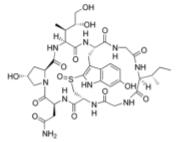
sponsors:

Abstract:

 α -Amanitin intoxications have been associated with acute kidney injury and renal failure, besides its well-known hepatotoxic effects. Currently, no effective antidote against α -amanitin toxicity exists. Recent *in vivo* studies have shown that polymyxin B (PolB) decreases α -amanitin toxicity and that the associated renal damage is largely decreased by this antibiotic. This work aimed to characterize α -amanitin cytotoxicity in HK-2 cells and evaluate PolB's putative antidotal effectiveness in this in vitro system.

HK-2 cells were exposed to α -amanitin (0.01-10 μ M) at different time-points and cytotoxicity evaluated by the MTT reduction and neutral red uptake assays. To assess PolB putative protective effects, two paradigms were used: (i) 30 min pre-incubation with PolB followed by 48h incubation with α -amanitin (0.5 and 1 μ M) or (ii) PolB co-incubation with α -amanitin (5 and 10 μ M) for 2h followed by a 48h drug/toxin-free period.

 α -Amanitin led to cytotoxicity effects on kidney cells at clinical relevant concentrations. The effectiveness of a previously described antidote, PolB, was not verified *in vitro*, which highlights the importance of further investigation on this antidotal strategy and its mechanisms.


Keywords: Amatoxin; Nephrotoxicity; Antidote; Poisoning

Amanita Phalloides

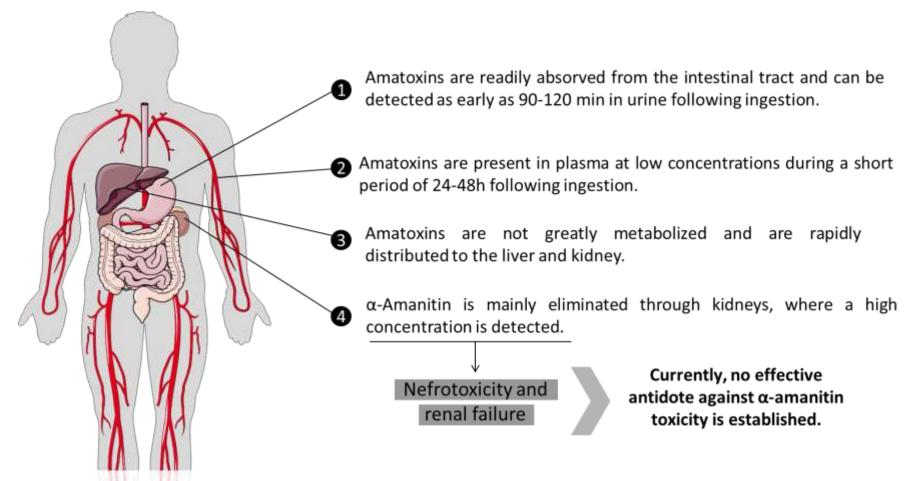
Chemical structure of α -amanitin

Amanita Phalloides (also known as death cap mushroom) is responsible for more than 90% of the fatalities caused by mushroom poisonings worldwide.

Amanita phalloides high lethality relies on powerful toxins such as α -amanitin.

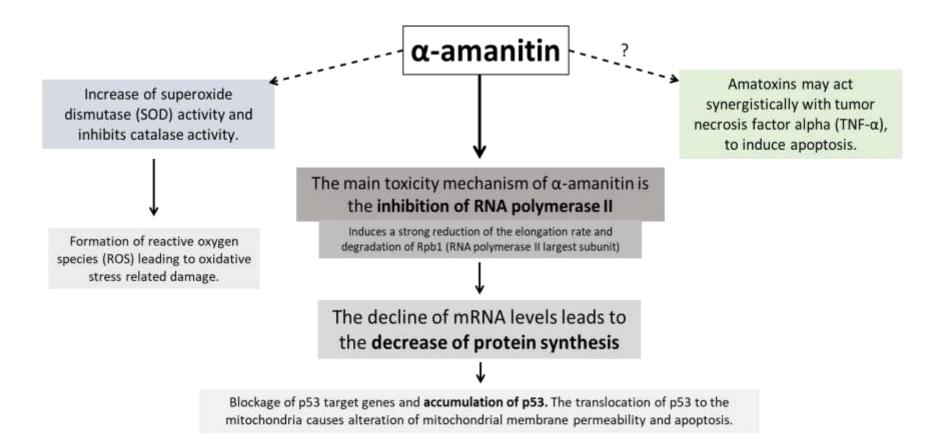
 $\alpha\mbox{-}Amanitin$ is a bicyclic octapeptide toxin belonging to the amatoxin family.

 $\alpha\mbox{-}Amanitin is heat resistant, resistant to enzymatic and acidic degradation.$

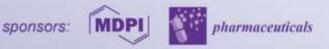

[1] - Ward, J., Kapadia, K., Brush, E., & Salhanick, S. D. (2013). Amatoxin poisoning: case reports and review of current therapies. The Journal of emergency medicine, 44(1), 116-121.

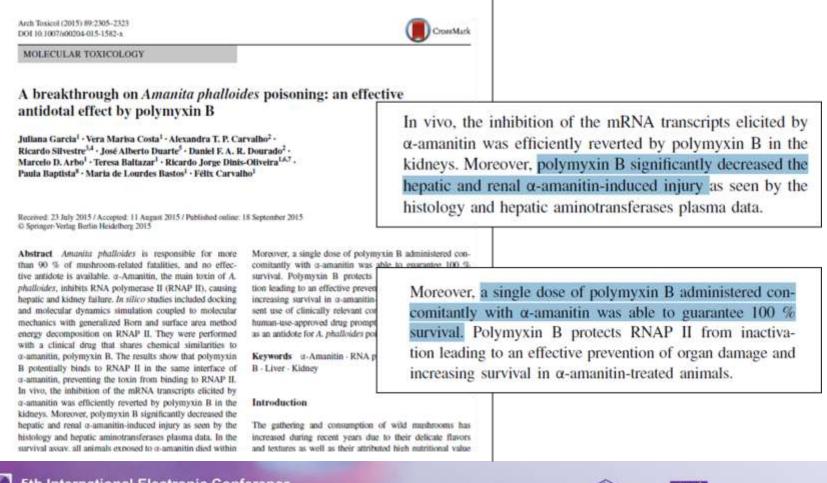
[2] - Garcia, J., Costa, V. M., Carvalho, A. T., Silvestre, R., Duarte, J. A. et al. (2015). A breakthrough on Amanita phalloides poisoning: an effective antidotal effect by polymyxin B. Archives of toxicology, 89(12), 2305-2323.

[3] - Pahl, A., Lutz, C., & Hechler, T. (2018). Amanitins and their development as a payload for antibody-drug conjugates. Drug Discovery Today: Technologies, 30, 85-89.


[4] - Jaeger, A., Jehl, F., Flesch, F., Sauder, P., & Kopferschmitt, J. (1993). Kinetics of amatoxins in human poisoning: therapeutic implications. Journal of Toxicology: Clinical Toxicology, 31(1), 63-80.
[5] -Garcia, J., Costa, V. M., Carvalho, A., Baptista, P., de Pinho, P. G., de Lourdes Bastos, M., & Carvalho, F. (2015). Amanita phalloides poisoning: Mechanisms of toxicity and treatment. Food and chemical toxicology, 86, 41-55.

5th International Electronic Conference on Medicinal Chemistry 1-30 November 2019

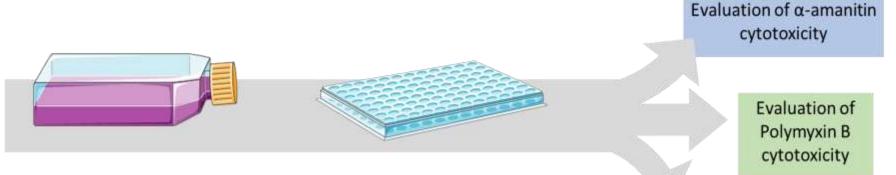

sponsors: MDPI



[5] - Garcia, J., Costa, V. M., Carvalho, A., Baptista, P., de Pinho, P. G., de Lourdes Bastos, M., & Carvalho, F. (2015). Amanita phalloides poisoning: Mechanisms of toxicity and treatment. Food and chemical toxicology, 86, 41-55.

5th International Electronic Conference on Medicinal Chemistry 1-30 November 2019

sponsors

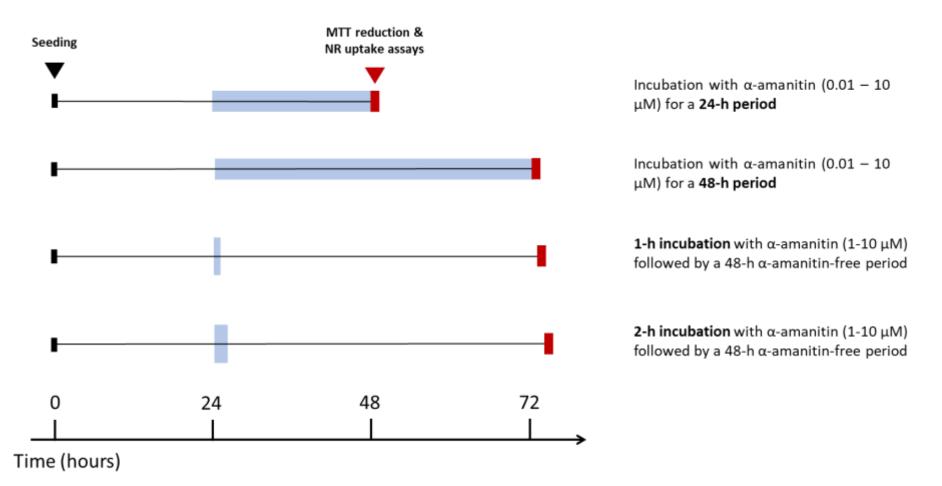

Aims

This work aims to characterize α -amanitin cytotoxicity in renal HK-2 cells and evaluate the putative protective effects of polymyxin B.

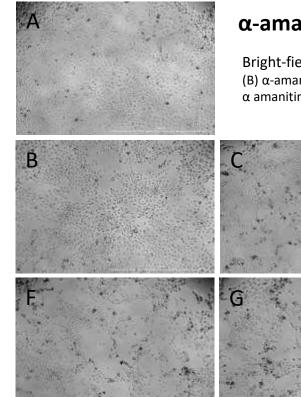
Methods

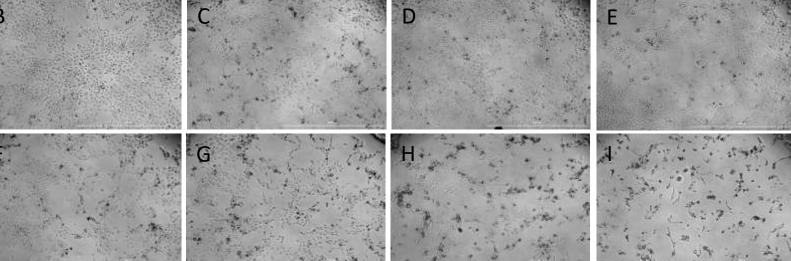
HK-2 cells were grown in RPMI 1640 medium (Sigma) supplemented with 10% FBS and 100 units/mL penicillin and 100 μ g/mL streptomycin at 37°C with 5% CO₂.

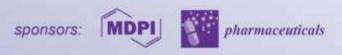
Cells were seeded in a density 15625 cells/cm² in 96 well-plates. All experiments were carried out between passage 8 and 15, 24h after trypsinization.

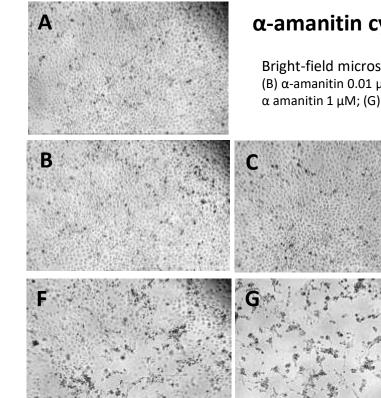

 $\begin{array}{c} \mbox{Protective effects of Polymyxin B} \\ \mbox{against } \alpha\mbox{-amanitin cytotoxicity} \end{array}$

Cytotoxicity was evaluated by the 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) reduction and neutral red (NR) uptake assays.

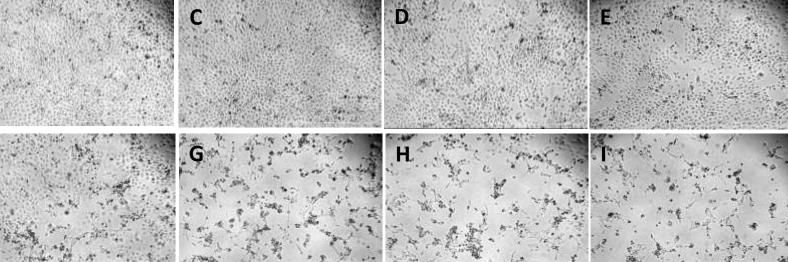

Cytotoxicity evaluation of α -amanitin






α -amanitin cytotoxicity following a 24h incubation period

Bright-field microscopy of HK-2 cells after a 24h incubation with α -amanitin. (A) Control; (B) α -amanitin 0.01 μ M; (C) α -amanitin 0.05 μ M; (D) α -amanitin 0.1 μ M; (E) α -amanitin 0.5 μ M; (F) α amanitin 1 μ M; (G) α -amanitin 2 μ M; (H) α -amanitin 5 μ M; (I) α -amanitin 10 μ M.



α -amanitin cytotoxicity following a 48h incubation period

Bright-field microscopy of HK-2 cells after a 48h incubation with α -amanitin. (A) Control; (B) α -amanitin 0.01 μ M; (C) α -amanitin 0.05 μ M; (D) α -amanitin 0.1 μ M; (E) α -amanitin 0.5 μ M; (F) α amanitin 1 μ M; (G) α -amanitin 2 μ M; (H) α -amanitin 5 μ M; (I) α -amanitin 10 μ M.

 α -amanitin cytotoxicity after 1h incubation followed by a 48h α -amanitin-free period

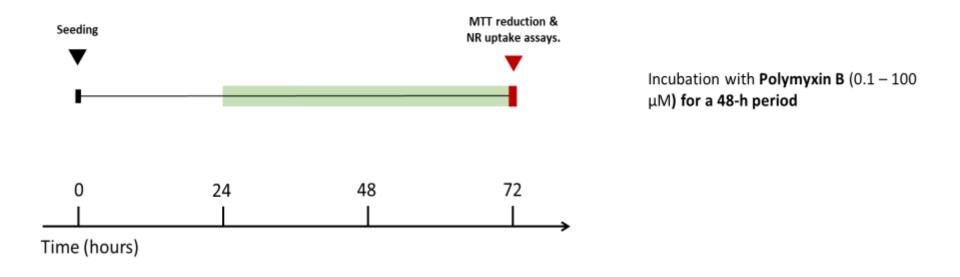
Cell viability assays

 α -amanitin cytotoxicity after 2h incubation followed by a 48h α -amanitin-free period

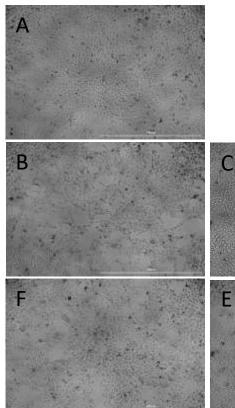
	cen viability assays	
[α-amanitin]	MTT reduction	NR uptake
1 μΜ	\downarrow	=
2 μΜ	=	\checkmark
5 μΜ	$\downarrow \downarrow \downarrow \downarrow \downarrow$	$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$
10 µM	$\checkmark \checkmark \checkmark \checkmark \checkmark$	$\checkmark \checkmark \checkmark \checkmark \checkmark$

Cell viability assays

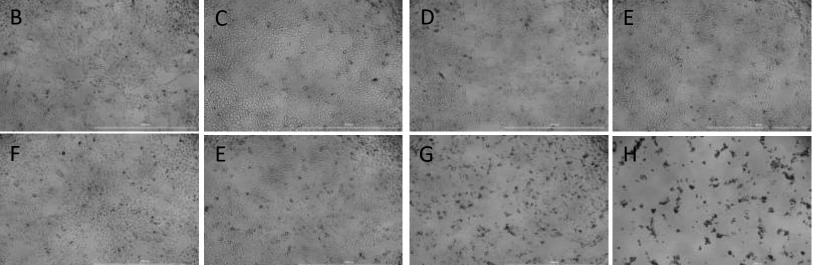
[α-amanitin]	MTT reduction	NR uptake
1 μΜ	$\checkmark \downarrow$	$\downarrow\downarrow$
2 μΜ	$\downarrow \uparrow \uparrow \uparrow \uparrow$	=
5 μΜ	$\downarrow \downarrow \downarrow \downarrow \downarrow$	$\downarrow \downarrow \downarrow \downarrow \downarrow$
10 µM	$\psi\psi\psi\psi\psi$	$\downarrow \downarrow \downarrow \downarrow \downarrow$

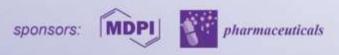

5th International Electronic Conference on Medicinal Chemistry 1-30 November 2019

sponsors:

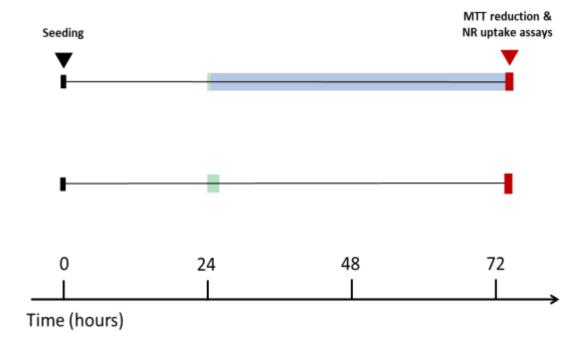

pharmaceuticals

Cytotoxicity evaluation of Polymyxin B at 48h





Polymyxin B cytotoxicity following a 48h incubation period


Bright-field microscopy of HK-2 cells after a 48h incubation with Polymyxin B. (A) Control; (B) polymyxin B 0.1 µM; (C) polymyxin B 0.5 µM; (D) polymyxin B 1 µM; (E) polymyxin B 5 μM; (F) polymyxin B 10 μM; (G) polymyxin B 20 μM; (H) polymyxin B 50 μM; (I) polymyxin B 100 μМ.

Putative effects of Polymyxin B against α -amanitin

30min pre-incubation with Polymyxin B (10 or 20 μ M) followed by **48h incubation with** α -**amanitin** (0.5 or 1 μ M)

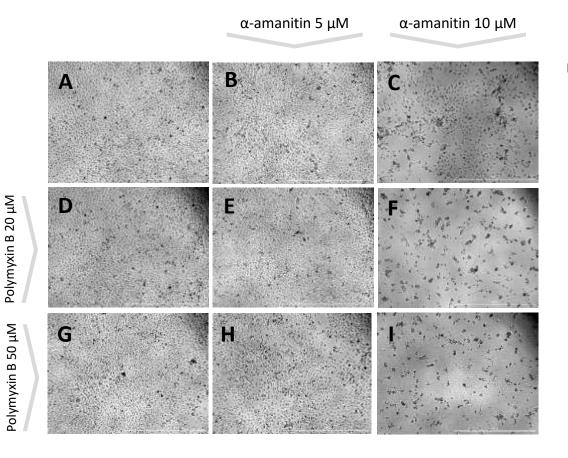
Polymyxin B (5 or 10 μM co-incubation with α -amanitin (20 or 50 $\mu M)$ for 2h followed by a 48h drug/toxin-free period

 α -amanitin 0.5 μ M α -amanitin 1 μ M G

Protective effects of Polymyxin B against α -amanitin:

Bright-field microscopy of HK-2 cells after **30min pre-incubation with Polymyxin B followed by 48h incubation with \alpha-amanitin.** (A) Control; (B) α -amanitin 0.5 μ M (C) α -amanitin 1 μ M; (D) Polymyxin B 10 μ M; (E) α -amanitin 0.5 μ M + Polymyxin B 10 μ M; (F) α -amanitin 1 μ M + Polymyxin B 10 μ M; (G) Polymyxin B 20 μ M; (H) α -amanitin 0.5 μ M + Polymyxin B 20 μ M; (I) α -amanitin 1 μ M + Polymyxin B 20 μ M.

No difference was observed between cells exposed to α -amanitin and Polymyxin B and cells exposed to α -amanitin alone.


Polymyxin B 10 µM

Polymyxin B 20 µM

Protective effects of Polymyxin B against α -amanitin:

Bright-field microscopy of HK-2 cells after **Polymixin B co-incubation with \alpha-amanitin for 2h followed by a 48h drug/toxin-free period.** (A) Control; (B) α -amanitin 5 μ M (C) α -amanitin 10 μ M; (D) Polymyxin B 20 μ M; (E) α -amanitin 5 μ M + Polymyxin B 20 μ M; (F) α -amanitin 10 μ M + Polymyxin B 20 μ M; (G) Polymyxin B 50 μ M; (H) α amanitin 5 μ M + Polymyxin B 50 μ M; (I) α -amanitin 10 μ M + Polymyxin B 50 μ M.

No difference was observed between cells exposed to α -amanitin and Polymyxin B and cells exposed to α -amanitin alone.

5th International Electronic Conference on Medicinal Chemistry 1-30 November 2019

sponsors:

Conclusions

The observed α -amanitin toxicity was time- and concentration-dependent;

- \rightarrow α -Amanitin toxicity was observed within 24h at concentrations higher than 1 μ M in the MTT reduction assay;
 - \rightarrow After a 48h incubation, α -amanitin caused significant cytotoxicity above 0.5 μ M.
- Lower toxicity was observed in shorter incubation periods (1 or 2h)
- Polymyxin B did not cause significant toxicity in concentrations bellow 100 μM after a 48h incubation period in the MTT reduction assay.
- Polymyxin B did not confer protection against α-amanitin cytotoxicity in all experimental paradigms tested.

Acknowledgments

This work was supported by FEDER funds through the Operational Programme for Competitiveness Factors – COMPETE and by national funds by the FCT within the project PTDC-DTP-FTO-4973-2014 – POCI-01-0145-FEDER 016545. VMC acknowledges Fundação da Ciência e Tecnologia (FCT) for her grant (SFRH/BPD/110001/2015), that was funded by national funds through FCT – Fundação para a Ciência e a Tecnologia, I.P., under the Norma Transitória – DL57/2016/CP1334/CT0006.

Fundação para a Ciência e a Tecnologia MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E ENSINO SUPERIOR

