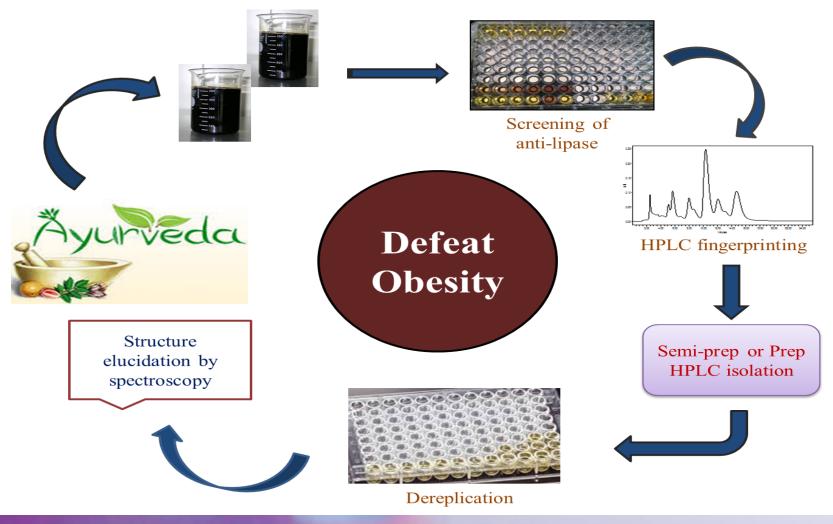


5th International Electronic Conference on Medicinal Chemistry


1-30 November 2019 chaired by Dr. Jean Jacques Vanden Eynde

sponsored by
pharmaceuticals

In-vitro Screening for of Alcohalic and Hydroalcohalic Extracts of *Ayurvedic* Medicinal Plants for the management of hyperlipidemia

Pooja Gaur, Karuna Shanker

CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow-226015 Email: <u>kspklko@yahoo.com</u> *In-vitro* Screening for of Alcohalic and Hydroalcohalic Extracts of *Ayurvedic* Medicinal Plants for the management of hyperlipidemia

5th International Electronic Conference on Medicinal Chemistry 1-30 November 2019

sponsors:

Abstract

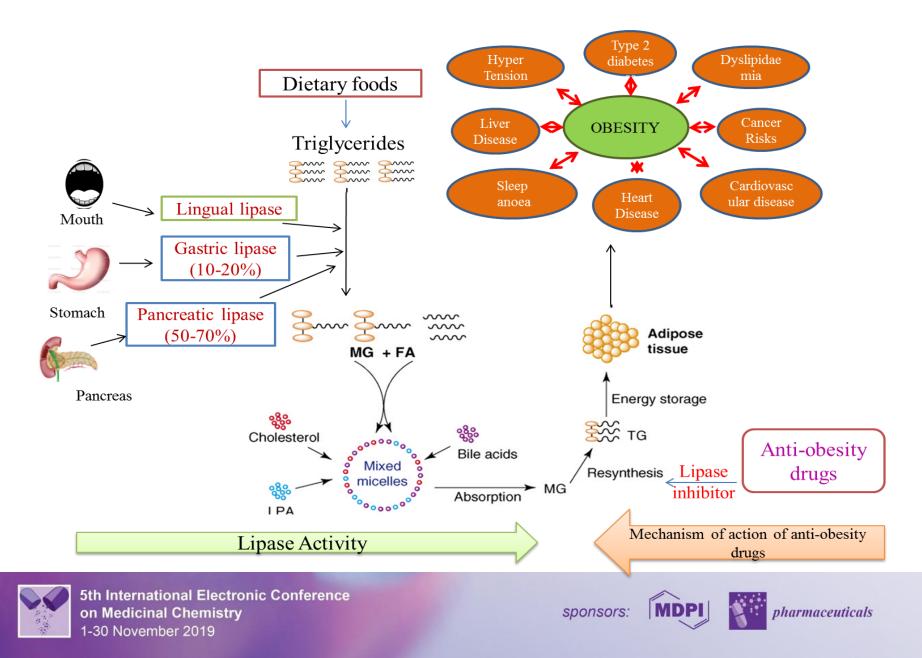
Background: In *Ayurveda*, obesity is regarded as '*Medoroga*', a disorder of lipid metabolism. Hyperlipidemia is one of the causes of Obesity. It is a condition when abnormally high levels of lipids (fatty substances) are found in the blood.

Aim: The objective of the present study is to explore pancreatic lipase inhibitory activity of plants used in Indian system of medicine i.e. *Ayurveda*.

Method: In the present study, thirty one '*Lekhenya*' plants were selected from the *Ayurveda*. Air-dried and finely powdered 31 plant material (2.0 g) were extracted with ethanol and hydro-alcohol (50:50; v/v) (3×10 ml) using cold percolation. The inhibition of pancreatic lipase activity of different plant extracts and orlistat (positive control) measured *'in-vitro'* lipase activity using the spectrophotometric assay.

Results : *In-vitro* lipase inhibition assay showed that six plants are *Sterosperum servolides* (Roxb.) D.C, *Prunus cerasoides* D. Don, *Murraya koenigii* L., *Putranjiva roxburghii* Wall., *Andrographis paniculata* (Burm. f.) Wall. ex Nees, *Ocimum scantum* linn exhibit IC_{50} value less than 100 (µg/ml) lipase inhibition activity.

Conclusion: The study indicates lipase inhibition potential of *Ayurvedic* plants, may be useful for the management of obesity which correlate with ethanopharmacological data on the use of these plants in Indian traditional medicines.


Introduction

- Obesity is considered one of the significant global health problems. In *Ayurveda*, obesity is regarded as *'medoroga'* a disorder of *'meda dhatu.'*
- The excess fat accumulated in the body and high levels of lipids in the blood is primarily responsible for obesity. Commonly referred to as hyperlipidemia.
- Lipase enzyme secreted through the pancreas plays a critical role in the digestion of dietary food (triglycerides into monoglycerides and free fatty acids).
- Orlistat is a synthetic drug analogue of lipstanin which inhibit the lipase inhibition activity. The adverse effects associated with modern synthetic drugs are demanding for the search of a new lipase inhibitor.
- Various *Lekhenya* plants were selected from the *Ayurveda*, which recommended for lowering the lipid level in blood.
- The previous finding has opened the possibility of phytochemical exploration of *Ayurvedic* plants for possible PL inhibitor for the management of obesity.

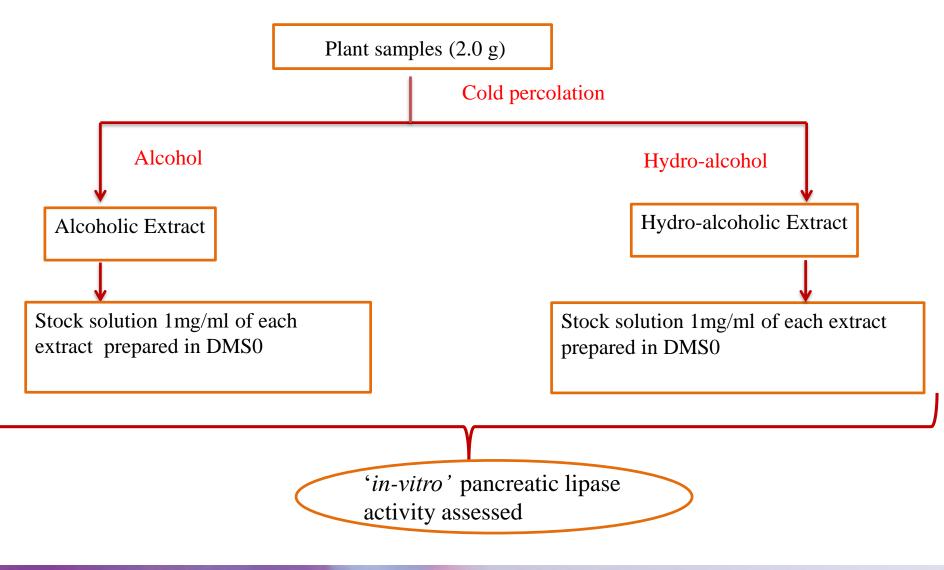
Mechanism of pancreatic lipase enzyme

Screening of plant shows potent lipase inhibition

- The reference of Indian text i.e. *Ayurveda* was taken for the preliminary screening of plants.
- The plants which were recommended to minimize the lipid level in blood were selected for the preliminary studies.
- The plant material were collected from research farm of CIMAP, Lucknow, India.
 (Table1).

Table 1: List of plant material collected for preliminary studies

S.No.	Plant name	Plant part
1	Ficus racemosa Linn.	Stem bark
2	Ficus racemosa Linn.	Fruit
3	Moringa olifera Lam.	Bark
4	Cratavea nurela Buch. Ham.	Bark
5	Terminalia arjuna Roxb. W.&A.	Bark
6	Plumbago zeylanica Linn.	Root
7	Asparagus racemosus willd.	Root
8	Pterocarpus marsupium Roxb.	Bark
9	Acorus calamus Linn.	Rhizome
10	Achryanthes aspera Linn.	Rhizome
11	Termenalia chebula Retz.	Fruit
12	Cymbopogon citratus DC. ex Nees	Leaves
13	Coccinia indica W.&A.	Leaves
14	Piper longum Linn.	Root
15	Temenallia bellarica Roxb.	Fruit


16	Cyperus rotudenous Linn.	Root
17	Ocimum scantum Linn.	Leaves
18	Curcuma longa Linn.	Rhizome
19	Agele marmelos L Correa. ex Roxb.	Fruit
20	<i>Andrographis paniculata</i> Burm. f. Wall. ex Nees	Root
21	Cuminum cyminum L.	Seed
22	Cuminum nigrum Linn.	Seed
23	Prunus amygdalus var. dulcis	Fruit
24	Bellis perennis Bell-p.	Fruit
25	Morus alba L.	Fruit
26	Stereospermum suaveolens Roxb. D.C	Bark
27	Prunus cerasoides D. Don	Bark
28	Clerodendrum viscosum Vent.	Bark
29	Duranta erecta L.	Bark
30	Gardenia lucida Roxb.	resin
31	Mannda tinctoria L.	Bark

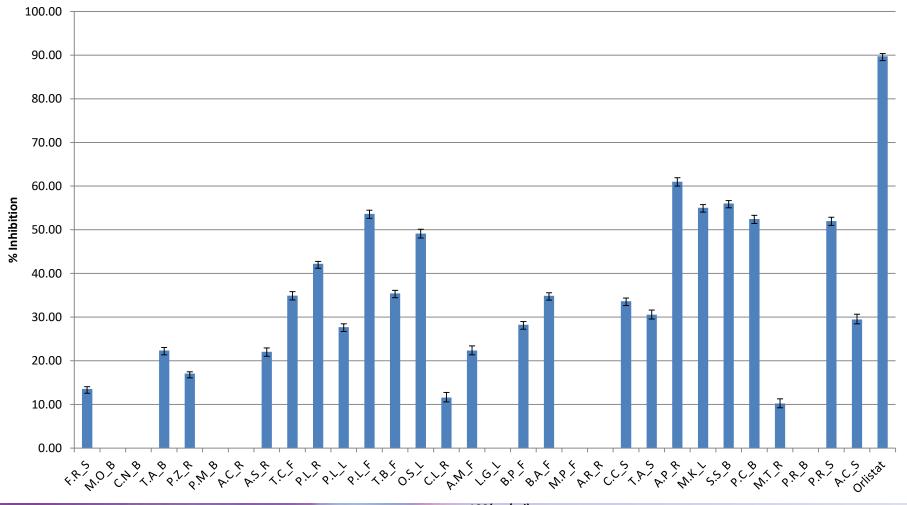
Preparation of Extract


5th International Electronic Conference on Medicinal Chemistry 1-30 November 2019

sponsors: MDP

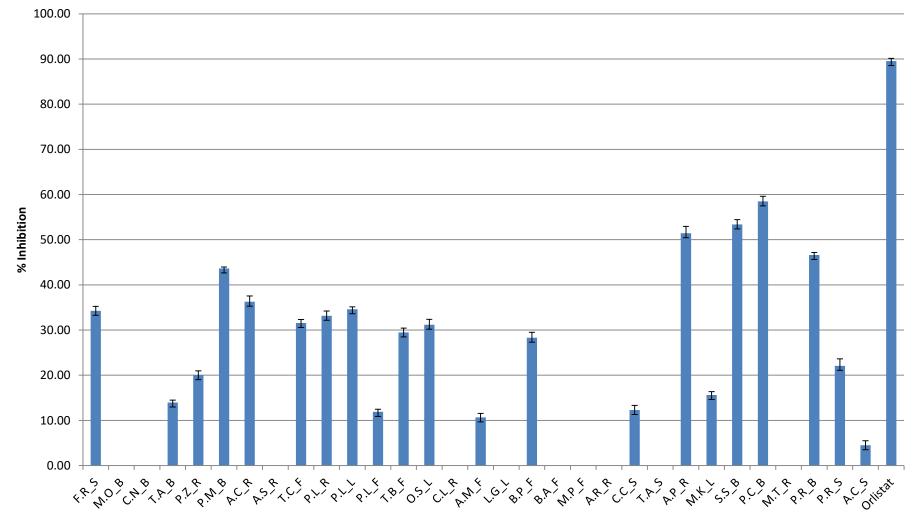
pharmaceuticals

Methodology



5th International Electronic Conference on Medicinal Chemistry 1-30 November 2019

Screening of lipase-inhibitory activity in 31 Ethanolic extracts


5th International Electronic Conference on Medicinal Chemistry 1-30 November 2019 conc.100(µg/ml)

sponsors:

pharmaceuticals

Screening of lipase-inhibitory activity in 31 Hydroalcohalic extracts

5th International Electronic Conference on Medicinal Chemistry 1-30 November 2019 Conc. 100(µg/ml)

sponsors:

pharmaceuticals

Table 2: Plant showed 50% inhibition in Lipase inhibitory

S.No.	Plant	Ethanolic Extract	Hydro alcoholic Extract
1.	Andrographis paniculata (Rt.)	+	-
2.	Stereospermum suaveolens (Roxb.) D.C (StBk.)	+	+
3.	Termenalia arjuna (StBk.)	+	-
4.	Prunus cerasoides D. Don (Rt.)	+	+
5.	Pterocarpus marsupium (StBk.)	-	+
6.	Murraya koenigii (L.)	+	-
7.	Ocimum scantum (Lf.)	+	-
8.	Piper longum (Rt.)	+	-
9.	Garcinia combogia (StBk.)	+	-

*(+) more than 50%; (-) Less than 50%

RESULT-

- The thirty one plants selected by taking reference from *Ayurveda* to screen pancreatic lipase inhibition potential.
- The lipase inhibitory activity of extracts (Alchoholic and Hydro-alchoholic) of the selected plants were determined according to the reported method.
- *In-vitro* lipase inhibition assay data showed that some plants gave better results as it was observed more than 50% enzyme inhibition in under listed plants (Table 2) and these can be considered as potent and others are least potent.
- From these plants some will be selected for further processing and isolation of compounds, according to their lipase inhibitory properties.

CONCLUSION

The study indicates lipase inhibition potential of *Ayurvedic* plants, may be useful for the management of obesity which correlate with Ethanobotanical data on the use of these plants in Indian folklore.

ACKNOWLEDGEMENT

The author is very thankful to Director, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow for providing research facilities and CSIR–SRF for supporting this work through fellowship.

