Sophisticated synthesis of monosubstituted piperazines

- from a batch reaction vessel to a flow (microwave) reactor

Dana Němečková, Eva Havránková, Jan Šimbera, Richard Ševčík, Pavel Pazdera

Masaryk University

Faculty of Science, Department of Chemistry, Kotlářská 2, Brno, CZ 611 37

General procedure of one-step synthesis of monosubstituted piperazine derivatives

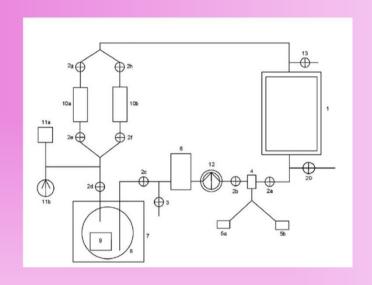
- based on a **one-step reaction** of a piperazine (free or HCl salt) with an appropriate compound (chloride, chloroderivative, ester, unsaturated compounds, anhydride etc.)¹⁻³
- proceeds at room or higher temperature in common solvents (methanol, acetic acid)
- catalyzed by metal ions supported on commercially available polymeric resins4,5

Comparison of classic and microwave-assisted processes

A - classic synthetic procedure¹⁻³

B - batch microwave procedure

C - flow microwave reactor procedure


Microwave assisted procedures **accelerate** the course of reactions while keeping comparable yields.

Microwave reactor flow processes show the biggest decreases in reaction times, moreover a flow reactor allows processing of larger volumes.

Reactant	Catalyst	Procedure ¹	Time (hr)	Product	Yield ² (%)
CI CH3	Cu(I)	Α	24	CI ⁻ H N + O - CH ₃	59-78
		В3	_		6 <u>3-2</u> 5
	Ce(III)	C ³	0.58		61
CI CH3	Ce(III)	A	19	- CI O CH ₃	53-60
	Cu(II)	В	5-6		48-54
	Cu(II)	С	2.17		64
H ₂ C CH ₃	Ce(III)	A	7	O-CH ₃	57-62
		В	4		42-50
		C	0.17		55-61
H₃C — CI	Cu(II)	Α	8	CIT N N CH ₃	67-75
		В	1.83		72
		C	=0		V
CI F	Cu(II)	Α	13	H N F	84
		В	2.5		67
		С	=:		9 155 .
F—CI	Cu(II)	Α	14	H N+ N-	88
		В	1		69
		C	-		-

Flow reactor with microwave unit and/or catalytic bed⁶

- variable design
- large volume processing
- speed and efficiency at affordable price

Scheme of a flow microwave/catalytic bed reactor system

Draft of an outer design of a flow reactor

Three working modes possible:

- 1) Microwave assisted flow mode
- 2) Microwave assisted flow mode combined with a catalytic bed
- 3) Simple flow mode with a catalytic bed

Monosubstituted piperazine derivatives are now commercially available for research and development, please visit:

www.entwickchemicals.com www.fichema.cz

Patents:

- 1) Pazdera, P.; Zberovská, B.; Němečková, D. (2014). Czech patent No. CZ 304520. IPO Prague, Czech Republic.
- 2) Pazdera, P.; Zberovská, B.; Herová, D. (2015). Czech patent No. CZ 305317. IPO Prague, Czech Republic.
- 3) Pazdera, P.; Zberovská, B.; Herová, D. (2016). Czech patent No. CZ 305854. IPO Prague, Czech Republic.
- 4) Pazdera, P.; Zberovská, B.; Procházková, M. (2013) Czech patent No. CZ 303987. IPO Prague, Czech Republic.
- 5) Pazdera, P.; Zberovská, B.; Herová, D.; Datinská, V.; Šimbera, J. (2015) Czech patent No. CZ 305277. IPO Prague, Czech Republic
- 6) Pazdera, P.; Němečková, D.; Havránková, E.; Šimbera, J.; Ševčík, R. (2018) Czech utility model No. CZ 32201. IPO Prague, Czech Republic.