6th International Electronic Conference on Sensors and Applications

HUMAN ACTIVITY RECOGNITION BASED ON DEEP LEARNING TECHNIQUES

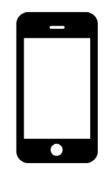
Manuel Gil-Martín

Contents

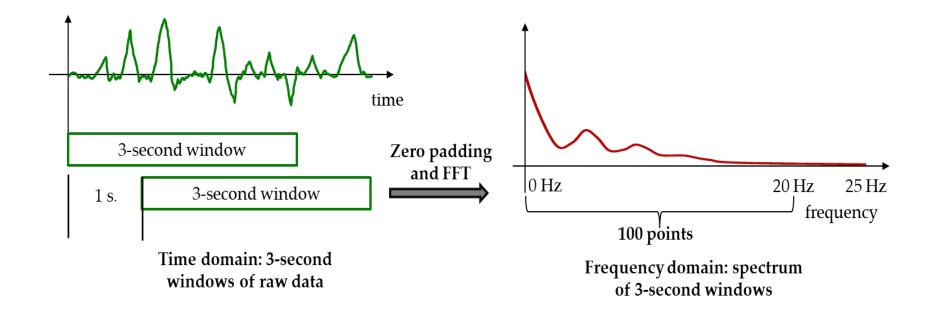
- Introduction
- Materials and Methods
- Results
- Discussion
- Conclusions

- Human Activity Recognition (HAR)
 - Recognize different activities performed by a person
- Applications
- On-body sensors vs. smartphones
- Raw data vs. frequency domain
- Deep learning architectures using Convolutional Neural Networks (CNNs)
- This work
 - Comparison of deep learning and signal processing strategies

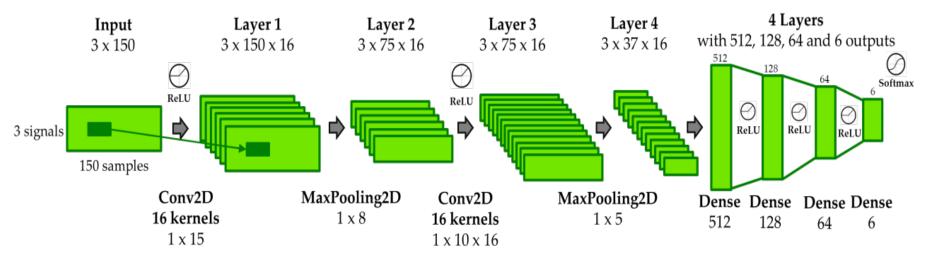
- MotionSense database
 - 6 physical activities, 24 subjects
 - iPhone 6S in trousers' front pocket
 - Accelerometer sampling at 50 Hz



- Two data formats of acceleration signals
 - Raw data
 - Fast Fourier Transform (FFT)

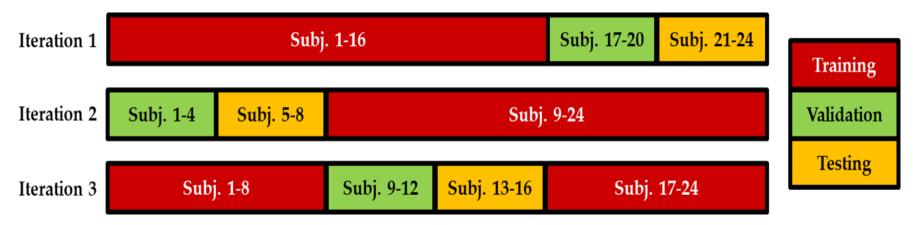


 Deep learning architecture composed of two convolutional and two max-pooling layers with decreasing kernel sizes



- Variations of this architecture
 - Number of convolutional kernels
 - Decreasing kernel sizes

- Subject-wise three-fold cross-validation
 - Data from 16 subjects to training set
 - Data from 4 subjects to validation set
 - Data from 4 subjects to testing set



• Performance of testing subset with number of epochs that minimizes the error in the validation subset

Introduction Materials and Methods Results Discussion Conclusions

Materials and Methods
O
O

Besults
Discussion Conclusions

Input of deep learning architecture	Number of convolutional layers	Convolutional kernels size (x,y)	Pooling kernels size (x,y)	Accuracy (%)
Raw data	1	(1,10)	(1,5)	91.23 ± 0.55
	1	(1,15)	(1,8)	92.92 ± 0.50
	1	(1,20)	(1,10)	93.21 ± 0.49
	1	(1,30)	(1,15)	91.95 ± 0.53
	2	(1,10) / (1,10)	(1,5) / (1,5)	92.50 ± 0.51
	2	(1,15) / (1,10)	(1,8) / (1,5)	95.28 ± 0.41
	2	(1,15) / (1,15)	(1,8) / (1,8)	93.39 ± 0.48
	2	(1,20) / (1,10)	(1,10) / (1,5)	91.93 ± 0.53
	2	(1,20) / (1,15)	(1,10) / (1,8)	93.77 ± 0.47
	2	(1,20) / (1,20)	(1,10) / (1,10)	93.63 ± 0.47
	2	(1,30) / (1,20)	(1,15) / (1,10)	91.55 ± 0.54
Input of deep learning architecture	Number of convolutional layers	Convolutional kernels size (x,y)	Pooling kernels size (x,y)	Accuracy (%)
FFT module	1	(3,3)	(1,2)	93.34 ± 0.48
	1	(3,6)	(1,3)	94.19 ± 0.45
	1	(3,9)	(1,5)	93.00 ± 0.49
	2	(3,3) / (3,3)	(1,2) / (1,2)	93.13 ± 0.49
	2	(3,6) / (3,6)	(1,3) / (1,3)	92.83 ± 0.50
	2	(3,6) / (3,3)	(1,3) / (1,2)	93.39 ± 0.48

• Raw data as input for classifying dynamic and static activities

法法肯太父

- Experiments for different types of movements
 - Dynamic activities
 - ➢ 88.18% of accuracy using raw data as input
 - > 90.14% of accuracy using FFT module as input
 - Static activities
 - No significant differences

- CNNs architecture for feature extraction and activity classification better than Support Vector Machines
- Selection of deep neural network depending on the input data
- Computation of FFT equivalent to convolutional layer
- Dynamic activities characterized by information in the frequency domain

- HAR system based on deep learning techniques for MotionSense dataset activities
- Different transformations to find the most appropriate input data format to the deep neural network
- Two convolutional and two max-pooling layers with decreasing kernel sizes architecture using raw data as input
- FFT module as input for classifying only between dynamic activities

6th International Electronic Conference on Sensors and Applications

THANK YOU FOR YOUR ATTENTION

Manuel Gil-Martín

