

6th International Electronic Conference on Sensors and Applications

15 – 30 November 2019

Chairs

Y POLITECNICO DI MILANO

Dr. Stefano Mariani, Dr. Thomas B. Messervey, Dr. Alberto Vallan, Dr. Stefan Bosse and Prof. Dr. Francisco Falcone

Organized by:

Stochastic Mechanical Characterization of Polysilicon MEMS: a Deep Learning Approach

José Pablo Quesada Molina, Luca Rosafalco and Stefano Mariani

Politecnico di Milano, Department of Civil and Environmental Engineering and

University of Costa Rica, Department of Mechanical Engineering

ENGINEERING MOTIVATION: failure of **POLYSILICON** (thin) films exposed to mechanical and thermal loads

Due to mechanical and thermal loads, (thin) Si films can break because of the propagation of inter- and/or trans-granular cracks

2

Quesada Molina et al. *Stochastic Mechanical Characterization of Polysilicon MEMS: a Deep Learning Approach*

Length-scales in MEMS: from package to thin film mech.

Multi-scale analysis of MEMS subject to mechanical shocks:

- decoupling between macro-scale and meso-scale allowed by small inertia of the sensor
- decoupling between meso-scale and micro-scale? (not allowed if nonlinear effects to be simulated)

Quesada Molina et al. *Stochastic Mechanical Characterization of Polysilicon MEMS: a Deep Learning Approach*

3

On-chip testing (crack and fatigue)

Quesada Molina et al. *Stochastic Mechanical Characterization of Polysilicon MEMS: a Deep Learning Approach*

Quesada Molina et al. *Stochastic Mechanical Characterization of Polysilicon MEMS: a Deep Learning Approach*

Micro-scale analysis: upscaling of elastic properties Homogenization approach

Through homogenization: in-plane macro strain and stress components (vectors)

$$E = \{E_{11} \ E_{22} \ E_{12}\}^{T} \Sigma = \{\Sigma_{11} \ \Sigma_{22} \ \Sigma_{12}\}^{T}$$

defined as volume averages, according to:

$$\boldsymbol{\Sigma} = \frac{1}{V} \int\limits_{V} \boldsymbol{\sigma} dV$$

 $\boldsymbol{E} = \frac{1}{V} \int\limits_{V} \boldsymbol{\varepsilon} dV$

local elastic law

$$\sigma = c \varepsilon$$

POLITECNICO DI MILANO

Quesada Molina et al. *Stochastic Mechanical Characterization of Polysilicon MEMS: a Deep Learning Approach*

Micro-scale: polysilicon properties

Polysilicon assumed to feature:

- one axis of elastic symmetry aligned with epitaxial growth direction x_3
- random orientation of other two elastic symmetry directions in the x_1 x_2 plane

Matrix of elastic moduli for single-crystal Si (FCC symmetry) 165.7 63.9 63.9 0 0 0 63.9 0 0 165.7 0 63.9 63.9 63.9 165.7 0 0 0 *GPa* **c** = 0 0 0 79.6 0 0 0 0 0 79.6 0 0 0 0 0 0 0 79.6

Quesada Molina et al. *Stochastic Mechanical Characterization of Polysilicon MEMS: a Deep Learning Approach*

Micro-scale analysis: upscaling of elastic properties

8

Elastic moduli in $\Sigma = CE$ are numerically bounded through:

 $\boldsymbol{X} = \begin{vmatrix} x_1 & 0 & \frac{x_2}{2} \\ 0 & x_2 & \frac{x_1}{2} \end{vmatrix}$ uniform strain boundary cond. $\boldsymbol{u} = \boldsymbol{X}\boldsymbol{E}$ on ∂V uniform stress boundary cond. $T = N\Sigma$ on ∂V $\boldsymbol{N} = \begin{bmatrix} n_1 & 0 & n_2 \\ 0 & n_2 & n_1 \end{bmatrix}$

Voigt and **Reuss** bounds:

from Hill-Mandel macro-homogeneity condition $\Sigma^{\mathrm{T}} E = \frac{1}{V} \int \sigma^{\mathrm{T}} \varepsilon dV = \frac{1}{V} \int \sigma_{l}^{\mathrm{T}} \varepsilon_{l} dV$

Voigt assumption: $\varepsilon = E$ everywhere

$$\boldsymbol{E}^{\mathrm{T}}\boldsymbol{C}\boldsymbol{E} = \frac{1}{V} \int_{V} \boldsymbol{\varepsilon}_{l}^{\mathrm{T}} \boldsymbol{c}_{l} \boldsymbol{\varepsilon}_{l} dV = \frac{1}{V} \int_{V} \boldsymbol{\varepsilon}^{\mathrm{T}} \boldsymbol{t}_{\varepsilon}^{\mathrm{T}} \boldsymbol{c}_{l} \boldsymbol{t}_{\varepsilon} \boldsymbol{\varepsilon} dV = \boldsymbol{E}^{\mathrm{T}} \left[\frac{1}{V} \int_{V} \boldsymbol{t}_{\varepsilon}^{\mathrm{T}} \boldsymbol{c}_{l} \boldsymbol{t}_{\varepsilon} dV \right] \boldsymbol{E} = \boldsymbol{E}^{\mathrm{T}} \left[\frac{1}{V} \int_{V} \boldsymbol{c} dV \right] \boldsymbol{E}$$
$$\implies \boldsymbol{C} = \frac{1}{V} \int_{V} \boldsymbol{t}_{\varepsilon}^{\mathrm{T}} \boldsymbol{c}_{l} \boldsymbol{t}_{\varepsilon} dV$$

Reuss assumption: $\sigma = \Sigma$ everywhere

Quesada Molina et al. Stochastic Mechanical Characterization of Polysilicon MEMS: a Deep Learning Approach

$$C^{-1} = \frac{1}{V} \int\limits_{V} \boldsymbol{t}_{\sigma}^{\mathsf{T}} \boldsymbol{c}_{l}^{-1} \boldsymbol{t}_{\sigma} dV$$

Micro-scale analysis: upscaling of elastic properties

Quesada Molina et al. Stochastic Mechanical Characterization of Polysilicon MEMS: a Deep Learning Approach

POLITECNICO DI MILANO

v

SVE size and upscaling of elastic properties

10

Polysilicon MEMS: a Deep Learning Approach

SVE size and upscaling of elastic properties

11

Quesada Molina et al. *Stochastic Mechanical Characterization of Polysilicon MEMS: a Deep Learning Approach*

Micro-scale analysis: upscaling of elastic properties

Quesada Molina et al. *Stochastic Mechanical Characterization of Polysilicon MEMS: a Deep Learning Approach*

Micro-scale analysis: upscaling of elastic properties Deep Learning approach

INPUT DATA

Images resolution= 256x256

Color scale indicate rotations 0°- 45°

192 SVE images+ data augmentation > 1536 images

(1152 images for training and 384 images for validation)

Quesada Molina et al. *Stochastic Mechanical Characterization of Polysilicon MEMS: a Deep Learning Approach*

Convolutional Neural Network (CNN) and Deep Learning

SOME RELEVANT HYPERPARAMETERS

- Optimizer=Adam(Ir=5e-4, decay=5e-4/200)
- Loss Function=Mean Squared Error
- Training epochs=100
- Batch size = 32

Scheme for 1 epoch

Quesada Molina et al. *Stochastic Mechanical Characterization of Polysilicon MEMS: a Deep Learning Approach*

Convolutional Neural Network (CNN) and Deep Learning

15

CNN training and validation

Final training loss = 2.6787 GPa^2 Final validation loss = 37.5667 GPa^2

Quesada Molina et al. *Stochastic Mechanical Characterization of Polysilicon MEMS: a Deep Learning Approach*

CNN predictions

17

 E_m = 150.0 GPa, E_s = 3.4 GPa for the validation set

 E_m = 149.9 GPa, E_s = 4.8 GPa for the validation set labels

VS

0,067% absolute error in E1 Mean 29,16% absolute error in E1 Standard Deviation E_m = 150.5 GPa, E_s = 5.5 GPa for the training set.

VS

 E_m = 149.7 GPa, E_s = 5.5 GPa for the labeled training set labels

0,53% absolute error in E1 Mean 0% absolute error in E1 Standard Deviation

Quesada Molina et al. *Stochastic Mechanical Characterization of Polysilicon MEMS: a Deep Learning Approach* 160