
proceedings

Proceedings

Multi-robot Mapping and Navigation using Topological
Features ‡

Ankit A. Ravankar 1,† ,* , Abhijeet Ravankar 2,† , Takanori Emaru 1 and Yukinori Kobayashi 1

1 Division of Human Mechanical Systems and Design Engineering, Faculty of Engineering, Hokkaido University,
Sapporo, Hokkaido 080-8628, Japan ; {ankit,emaru,kobay}@eng.hokudai.ac.jp

2 School of Regional Innovation and Social Design Engineering, Faculty of Engineering, Kitami Institute of
Technology, Kitami, Hokkaido 090-8507, Japan; aravankar@mail.kitami-it.ac.jp

* Correspondence: ankit@eng.hokudai.ac.jp
† These authors contributed equally to the work.
‡ Presented at the 6th International Electronic Conference on Sensors and Applications,

15–30 November 2019; Available online: https://ecsa-6.sciforum.net/

Published: 14 November 2019

Abstract: Robot mapping and exploration is basic to many robotic applications such as search and rescue
operations in disaster scenarios, warehouse management, service robotics, patrolling and autonomous
driving. With recent advances in robot navigation and sensor compactness, single robot systems can
accurately model the environment and perform complex autonomous navigation tasks. On the other
hand, multi-robot systems can speed up mapping and exploration tasks in emergency situations, such as
rescue missions by making use of distributed sensors thereby increasing the range of exploration task that
is not possible with a single robot. Each robot explores and maps different areas of the same environment
that are finally merged and connected to make a global map. To build a map of an unknown environment,
each robot must perform SLAM or Simultaneous Localization and Mapping. A big challenge with
multi-robot SLAM system is the transfer of shared map information between multiple robots. There is a
possibility of transfering individual measurement errors to the global map resulting in excess computation
and memory required to store such maps. To overcome this problem we propose to use topological
feature map representation that can store information into nodes and edges and does not have any large
memory requirements. We present a combined metric-topological mapping approach to multi-robot
SLAM. This method maintains a topological pose graph with sensor information stored in nodes and
edges that can be optimized globally with reduced information sharing. By combining local metric and
topological maps build by individual robots, the reduced graph structure can be merged and extended
to map large areas effectively. To robustly merge local maps into global one, we used visual features
from each robot that are matched in a distributed system. The graph node-edge structure is used for path
planning and navigation. At the same time information sharing between robots results in optimized task
distribution between multi-robots.
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0. Introduction

Simultaneous Localization and Mapping or SLAM is an essential skill for a robot to navigate in
unknown environment. The SLAM problem is the backbone for modern autonomous driving industry
and is used for many applications including warehouse robotics, search and rescue and infrastruction
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maintenance. Single robot SLAM has been extensively studied over the last 20 years and many solutions to
the problem had been proposed. Many of these techniques formulate the SLAM problem with probabilistic
filters such as Kalman filter or Information filters where the robot poses and features are stored in large
state vector which is continuously updated as the robot explores the area and new landmarks are added to
the vector[1,2]. The landmarks can be represented as simple points such as corners, or as defined features
such as lines, planes and in case of camera as keypoint features that are extracted from the camera images.
The complexity of SLAM problem increases with the type of environment (static and dynamic), and kind
of features that are used to determine the environment[3–5]. For mapping in indoor environments, a
common method is to represent the environment as metric maps particularly occupied grid maps where
the obstacles and navigable spaces are represented in the grid as occupied or unoccupied cells. SLAM with
occupancy grid maps has been presented as fastSLAM that uses Rao-blackwellized particle filter [6]. Other
methods include representing the environment as features e.g. lines, planes or point features[7–9]. Recently
graph based approaches to solve the problem are gaining popularity amongst SLAM researchers[10]. In
graph SLAM, the robot‘s poses are presented as nodes and edges and the problem is divided into front
and back end. While the local SLAM and map corrections are done at front end, the global optimization is
performed as graph optimization problem at the back end. A brief overview of recent advances in SLAM
are briefly presented in [11].

In case of multi-robot systems, the SLAM problem can be regarded as a distributed problem, where
each robot performs its own SLAM and their individual maps are finally merged using some method to
combine all the features[12–14]. The problem is challenging because constraints and errors arising from
individual robots will result in a corrupted map and failed localization[15]. Secondly, the computational
power required to handle such complex process of combining maps and correcting pose errors from
individual robots into a global map is very high[16]. Communication between the robots is also challenging
and algorithms need to be designed such that messages can be transfered symlessly between the robots[17,
18].

Topological maps are another way to represent the environment and have been used by many
researchers in the past[19,20]. Topological maps are the simplest of maps where the map information
are stored in simple nodes connected by edges. The representation is similar to that of a graph where
nodes and edges are used to represent the robot poses and their relations. Another advantage of using
topological maps is that the nodes can be used to represent more information about the environment such
as semantic features and objects that can be stored into the nodes. Moreover, the memory required to store
such topological nodes is very small as compared to metric or graph maps[21].

In this work, we tried to combine the two information from the map (metric and topological) and
used it to solve the multi-robot SLAM problem. Our method uses a reduced graph node structure where
the map information are transfered between the robots resulting in faster map convergence and more
consistent maps. We present our results in a simulation environment with two robots equipped with range
sensor and camera. Features from camera are used for semantic representation of the environment and
further enhances the confidence in merging maps.

1. Single Robot Graph Measurement

Each robot in our multi-robot system runs its own pose-graph based approach. The problem reduces
to calculate the robot‘s position along its trajectory x = (x1, x2, · · · , xn). Each of the pose is represented
as graph connected by edges which represents the constraints between the two poses[22]. Each of the
node also stores sensor information such as lidar scans. An edge between two poses share odometric
measurements coming from wheel encoders. These measurements are represented as Gaussian variable
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Figure 1. Multi-robot SLAM process. Robot A and B sends the node information for sharing shown in
green. Their respective topological nodes are shown as circles.

and each of the measurement between the node xi and xj by its mean zij, (i, j) ∈ N and information matrix
Ψ. The estimated error can be represented as:

eij(xi, xj) = zij − ẑij (1)

Here, zij is the sensor measurement, and ẑij = h(xi, xj) gives the expected measurement between the two
nodes (pose and orientation). The goal of the graph SLAM then becomes a maximum likelihood functions
whose goal is to minimize the node configuration in the graph given as[23]:

x∗ = arg minG(x) (2)

G(x) = ∑
(ij∈N)

eT
ijΨijeij (3)

This is a non-linear problem that is solved using the standard optimization algorithm such as
Levenberg-Marquardt algorithm or Gauss-Newton method[23].

A problem with directly transferring the node and edges or the graph to other robots in the multi-robot
system poses a lot of challenges as stated earlier. Firstly, errors in individual graph can be translated as it
is to other robots and a mismatch may result in large deflection(error) in the combined graph. Secondly,
transferring all the nodes will result in a large graph that requires more computation to optimize at
backend, and in general would distort the graph. To solve this problem we propose to use the graph nodes
with topological format(information).

1.1. Topological formulation

The topological map is represented as a graph tuple G = {N , E}made of nodes, (N = n1, n2, · · · , np)

and edges (E = e1, e2, · · · , ep)[19,21]. Additional change is that every node stored in amathcalN stores
more information about the type of edges, sensor information such image and image matching feature and
surrounding (room, corridor etc.) that is classified by region geometry. Every node in the topological node
is unique and is assigned only once per node. A node can be associated to different areas in the map for
semantic representation. Other available information can be added to the node depending on the region
and its properties including objects. The drawback however will be an increase in the computation cost to
store all nodes.

2. Multi-robot SLAM

Once all the robots have build their own topological graph SLAM, the information can be shared
across different robots. To reduce the burden of sharing all node information, a reduced graph approach
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Figure 2. Multi-robot experiment. Robot A‘s nodes are presented in yellow and Robot B‘s in blue. The
green nodes are the common or shared nodes between the two robots and the merged map is presented as
grid map.

is proposed that can fasten the search and merging process. Only nodes that share similar properties
from the semantic information including robust matching of features such as SIFT or SURF are shared
among the encountered robots. Consider a situation as shown in Figure 1. Two robots A and B explore
different areas of the same map and run their own SLAM algorithm. When robot A comes within the
communication range of robot B, the information sharing is triggered by ping messages between the two.
Nodes are shared based on scan matching parameters of range sensor data. Image matching between robot
A and robot B is performed to check if the robot has seen the place before. The topological information in
nodes, and semantic information(e.g. whether the area is a corridor, or a particular room) that is previously
stored into the nodes are matched and confirmed. After enough confidence is built across the two robots,
they start to accept the nodes into their own graph and update the overall graph through optimization
where the transformation between the two robot(A and B) poses are determined. Only nodes in the area
of search are shared among the robots, thereby reducing the number of nodes that are shared. This is
done through our semantic topological node matching. When the confidence level reaches the theshold
value that is set by the user, other nodes can be shared to validate the missing information from the map.
Optimization at this time takes place in both the robots, such that each robot has the updated information
about the environment. Our proposed method allows the robots to share the information at real-time
in wifi networks since the size of shared information is within the limit of real-time performance. Each
robot can use the shared graph for robust localization using the merged pose graph and range sensor scan
matching[8].

3. Results

To test the proposed idea, experiments were performed using two robots in a simulated environment.
The simulation environment consists of many room like environment connected by long corridor that
resembles like office areas. The environment was constructed using the Gazebo simulator. All computations
were performed on a single laptop PC with core i7 processor and 16 GB of RAM. Robot Operating System
(ROS) was used for programming and data collection. The robots were equipped with range sensor and
camera sensor and wheel odometries from respective robots were used to measure odometry. Each robot
ran its own topological graph SLAM and the communication was set up to mimic wifi environment where
the robots can share information once they within each others communication range. Robot A‘s trajectory
and topological graph nodes are shown in yellow and B‘s are shown in blue. Each robot started exploration



Proceedings 2019, 2019, 6 5 of 6

at opposite end of the map. Robot B was programmed to enter into Robot A‘s area at some point and
the node sharing process was initiated. The transformation was checked by matching image features,
range sensor scan matching and based on this data, transformation between the two nodes was calculated
and merged as common nodes (shown in green). The final merged grid (metric) map is shown in the
background. As can be seen from the figure, the map is correctly merged and can be used for multi-robot
task coordination and task sharing[24].

4. Conclusions

This paper presented a method of multi-robot SLAM and exploration using a reduced graph and
topological information. Our proposed method matches and merges nodes coming from individual robots
into reduced graph and outputs a merged optimized graph and map. The process only considers nodes
in the vicinity of the robot and therefore is computationally efficient. Results were shown in simulation
environment and the results confirm the effectiveness of the proposed framework. In future, we will test
the proposed idea in real environment with actual robots.

Author Contributions: Ankit A. Ravankar and Abhijeet Ravankar conceived the idea, performed the experiments,
and developed the algorithm for the multi-robot SLAM. Takanori Emaru and Yukinori Kobayashi provided suggestions
to analyze data and improve the manuscript. The article was written by Ankit A. Ravankar.

Funding: This research received no external funding.

Conflicts of Interest: “The authors declare no conflict of interest.”

References

1. Thrun, S.; Burgard, W.; Fox, D. Probabilistic Robotics (Intelligent Robotics and Autonomous Agents); The MIT Press,
2005.

2. Dissanayake, M.W.M.G.; Newman, P.; Clark, S.; Durrant-Whyte, H.F.; Csorba, M. A solution to the simultaneous
localization and map building (SLAM) problem. IEEE Transactions on Robotics and Automation 2001, 17, 229–241.
doi:10.1109/70.938381.

3. Ravankar, A.; Ravankar, A.A.; Kobayashi, Y.; Emaru, T. SHP: Smooth Hypocycloidal Paths with Collision-Free
and Decoupled Multi-Robot Path Planning. International Journal of Advanced Robotic Systems 2016, 13, 133,
[https://doi.org/10.5772/63458]. doi:10.5772/63458.

4. Huang, S.; Dissanayake, G. Convergence and consistency analysis for extended Kalman filter based SLAM.
IEEE Transactions on robotics 2007, 23, 1036–1049.

5. Ravankar, A.; Ravankar, A.; Kobayashi, Y.; Emaru, T. Symbiotic navigation in multi-robot systems with remote
obstacle knowledge sharing. Sensors 2017, 17, 1581.

6. Montemerlo, M.; Thrun, S.; Koller, D.; Wegbreit, B.; others. FastSLAM 2.0: An improved particle filtering
algorithm for simultaneous localization and mapping that provably converges. IJCAI, 2003, pp. 1151–1156.

7. Ravankar, A.A.; Hoshino, Y.; Ravankar, A.; Jixin, L.; Emaru, T.; Kobayashi, Y. Algorithms and a framework for
indoor robot mapping in a noisy environment using clustering in spatial and hough domains. International
Journal of Advanced Robotic Systems 2015, 12, 27.

8. Wang, Y.T.; Peng, C.C.; Ravankar, A.; Ravankar, A. A Single LiDAR-Based Feature Fusion Indoor Localization
Algorithm. Sensors 2018, 18, 1294.

9. Ravankar, A.; Ravankar, A.A.; Hoshino, Y.; Emaru, T.; Kobayashi, Y. On a hopping-points svd and hough
transform-based line detection algorithm for robot localization and mapping. International Journal of Advanced
Robotic Systems 2016, 13, 98.

10. Thrun, S.; Montemerlo, M. The graph SLAM algorithm with applications to large-scale mapping of urban
structures. The International Journal of Robotics Research 2006, 25, 403–429.

https://doi.org/10.1109/70.938381
http://xxx.lanl.gov/abs/https://doi.org/10.5772/63458
https://doi.org/10.5772/63458


Proceedings 2019, 2019, 6 6 of 6

11. Cadena, C.; Carlone, L.; Carrillo, H.; Latif, Y.; Scaramuzza, D.; Neira, J.; Reid, I.; Leonard, J.J. Past, present,
and future of simultaneous localization and mapping: Toward the robust-perception age. IEEE Transactions on
robotics 2016, 32, 1309–1332.

12. Cunningham, A.; Paluri, M.; Dellaert, F. DDF-SAM: Fully distributed SLAM using constrained factor graphs.
2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2010, pp. 3025–3030.

13. Ravankar, A.; Ravankar, A.A.; Kobayashi, Y.; Emaru, T. On a bio-inspired hybrid pheromone signalling for
efficient map exploration of multiple mobile service robots. Artificial life and robotics 2016, 21, 221–231.

14. Saeedi, S.; Trentini, M.; Seto, M.; Li, H. Multiple-robot simultaneous localization and mapping: A review.
Journal of Field Robotics 2016, 33, 3–46.

15. Ravankar, A.; Ravankar, A.; Kobayashi, Y.; Emaru, T. Hitchhiking robots: A collaborative approach for efficient
multi-robot navigation in indoor environments. Sensors 2017, 17, 1878.

16. Labbe, M.; Michaud, F. Online global loop closure detection for large-scale multi-session graph-based SLAM.
2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2014, pp. 2661–2666.

17. Roumeliotis, S.I.; Bekey, G.A. Distributed multi-robot localization. In Distributed autonomous robotic systems 4;
Springer, 2000; pp. 179–188.

18. Leung, K.Y.; Barfoot, T.D.; Liu, H.H. Distributed and decentralized cooperative simultaneous localization
and mapping for dynamic and sparse robot networks. 2011 IEEE International Conference on Robotics and
Automation. IEEE, 2011, pp. 3841–3847.

19. Chang, H.J.; Lee, C.G.; Hu, Y.C.; Lu, Y.H. Multi-robot SLAM with topological/metric maps. 2007 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE, 2007, pp. 1467–1472.

20. RAVANKAR, A.; RAVANKAR, A.; KOBAYASHI, Y.; EMARU, T. Semantic Navigation for Indoor Service
Robots. The Proceedings of JSME annual Conference on Robotics and Mechatronics (Robomec) 2018. The
Japan Society of Mechanical Engineers, 2018, pp. 1P1–G01.

21. Ravankar, A.A.; Ravankar, A.; Emaru, T.; Kobayashi, Y. A hybrid topological mapping and navigation method
for large area robot mapping. 2017 56th Annual Conference of the Society of Instrument and Control Engineers
of Japan (SICE). IEEE, 2017, pp. 1104–1107.

22. Sünderhauf, N.; Protzel, P. Towards a robust back-end for pose graph slam. 2012 IEEE International Conference
on Robotics and Automation. IEEE, 2012, pp. 1254–1261.

23. Grisetti, G.; Kummerle, R.; Stachniss, C.; Burgard, W. A tutorial on graph-based SLAM. IEEE Intelligent
Transportation Systems Magazine 2010, 2, 31–43.

24. Ravankar, A.A.; Ravankar, A.; Peng, C.C.; Kobayashi, Y.; Emaru, T. Task coordination for multiple mobile
robots considering semantic and topological information. 2018 IEEE International Conference on Applied
System Invention (ICASI). IEEE, 2018, pp. 1088–1091.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution (CC
BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Single Robot Graph Measurement
	Topological formulation

	Multi-robot SLAM
	Results
	Conclusions
	References

