Mechanical Line Fit Model to Monitor the Position of KM3NeT Optical Modules from the Acoustic and Compass/Accelerometer Sensor System Data

Dídac D.Tortosa on behalf of the KM3NeT collaboration

e-mail: didieit@upv.es
PhD student

UNIVERSITAT POLITĖCNICA DE VALÈNCIA

CAMPUS DE GANDIA

INDEX

INTRODUCTION
KM3NeT
Mechanical Line Fit Model
MECHANICAL LINE FIT MODEL
Acoustic Positioning System (APS)
Attitude and Heading Reference System (AHRS)
Mechanical Model (MM)
PROCEDURE TO RECONSTRUCTION
Explanation
Results
CONCLUSIONS

KM3NeT

KM3NeT: underwater neutrino's detector developing in Mediterranean Sea to study the neutrino's oscillations (ORCA) and neutrino's astronomy (ARCA)
\longrightarrow ORCA: 120 DU (height $200 \mathrm{~m}, 2500 \mathrm{~m}$ depth)
\rightarrow ARCA: 220 DU (height $700 \mathrm{~m}, 3500 \mathrm{~m}$ depth)

6th International Electronic Conference on Sensors and Applications

KM3NeT

KM3NeT: underwater neutrino's detector developing in Mediterranean Sea to study the neutrino's oscillations (ORCA) and neutrino's astronomy (ARCA)
\longrightarrow ORCA: 120 DU (height $200 \mathrm{~m}, 2500 \mathrm{~m}$ depth)
\longrightarrow ARCA: 220 DU (height $700 \mathrm{~m}, 3500 \mathrm{~m}$ depth)

The problem:
The DOMs are not quiet by sea current. To reconstruct neutrino's path (detection) is necessary monitoring the position of DOMs.

The solution:
Installed an APS and an AHRS on the detectors to know the location and orientation of every DOM.

In principle, all DU-bases will install a hydrophone

INTRODUCTION Mechanical Line Fit Model

INPUTS for Mechanical Line Fit Model

- APS data \rightarrow LOCATION of acoustic receivers $\{x, y, z\}$
- AHRS data \rightarrow ORIENTATION $\{$ Y AW, PITCH, ROLL $\}$

Mechanical Model

- Effective sea current velocity: v
- Effective sea current direction: ω
- Mechanical properties.

OUTPUTS for Mechanical Line Fit Model

- LOCATION of DOMs $\{x, y, z\}$
- CORRECTED ORIENTATION \{YAW, PITCH, ROLL\}

Mechanical Line Fit Model is necessary:

- To filter bad data
- To convert to the location of the center in the DOM
- If some sensor presents failures
- If some data is missing (fail detection or registration)

MECHANICAL LINE FIT MODEL
 Acoustic Positioning System (APS)

For the moment, ORCA has deployed 4 DUs and ARCA 1 DU.
Each detector have 3 Autonomous Beacons (AB), that they are emitting every 10 min and they are anchored in a known position. By a triangulation method is possible know the location of each acoustic receiver (DOMs).

3 ABs before their installation
6th International Electronic Conference on Sensors and Applications

AB (SPL of 180 dB re $1 \mu \mathrm{~Pa} @ 1 \mathrm{~m}$): Sweeps signals of 5 ms every 10 minutes

In the rest of the DOMs: $\operatorname{ToA}_{i, j}$ (2)

Sweep signals of each $A B$

Then, it is possible obtained the ToE from every $A B$:

$$
\begin{aligned}
\text { (3) } \operatorname{ToE}_{i} & =\text { ToA }_{i, \text { ref }}-\text { ToF }_{i, \text { ref }}= \\
= & \text { ToA }_{i, \text { ref }}-\left(\frac{R_{k, i}}{c_{\text {sound }}}\right)
\end{aligned}
$$

If the reference of APS is the DOM1, because the hydro on the base is not available, the error in APS data is increasing, because the DOM1 is assumed fix it (it's an approximation).

Now, we can calculate:

$$
\text { (4) } T o F_{i, j}=T o A_{i, j}-T o E_{i}
$$

$\boldsymbol{T o F}_{i, j} \cdot \mathbf{c}_{\text {sound }}$ (distance) is used to triangulate and obtained the location of receivers

Dídac D.Tortosa

on behalf of the KM3NeT collaboration

MECHANICAL LINE FIT MODEL Attitude and Heading Reference System (AHRS)

The boards on DOMs used are developed within the KM3NeT collaboration and are calibrated before their installation. The accuracy of the system is estimated to be smaller than 3.5 degrees .

The AHRS data provides the orientation of each DOM (YAW, PITCH and ROLL)

If you know the location of a specific DU-base, from an effective sea current velocity and direction, the MM can predict the position of every DOM.

MECHANICAL LINE FIT MODEL

Mechanical Model (MM)

MM considers the drag force (F) and buoyancy (W) in every item on the line (depending of its height, z):

$$
\begin{aligned}
& F(z)=f(z) v^{2}=\left\{\left[\sum_{i=1}^{18}\left(f_{\text {DOM }^{\prime}}+f_{\text {cable }_{i}}\right)+f_{\text {long string }}\right]\left(\frac{h-z}{z}\right)+f_{\text {top buoy }}\right\} v^{2} \\
& W(z)=\left[\sum_{i=1}^{18}\left(W_{\text {DOM }^{2}}+W_{\text {cable }_{i}}\right)+W_{\text {long string }}\right]\left(\frac{h-z}{z}\right)+W_{\text {top buoy }}
\end{aligned}
$$

MM calculates the displacement of every DOM from their vertical axis (r). It uses a specific sea current velocity value:

$$
r(z)=\int_{0}^{z} g(z) d z=\left[\frac{n}{q} z-\left(\frac{m q-n q}{q^{2}}\right) \ln \left(1-\frac{q}{p} z\right)\right] v^{2}
$$

$\tan (\alpha)=\frac{F(z)}{W(z)}=g(z)$

MECHANICAL LINE FIT MODEL

Mechanical Model (MM)

Mechanical Model (MM)

$$
\begin{gathered}
f_{j}=\frac{1}{2} C_{w, j} A_{j} \rho\left[\mathrm{Ns}^{2} / \mathrm{m}^{2}\right] \\
\qquad \underset{\longrightarrow}{\longrightarrow} \text { A: Density of the water }\left[\mathrm{kg} / \mathrm{m}^{3}\right] \\
\qquad \begin{array}{l}
\text { Croction }\left[\mathrm{m}^{2}\right]
\end{array} \\
\qquad \begin{array}{l}
\text { drag coeficient }
\end{array}
\end{gathered}
$$

$$
W_{j}=W I W_{j} \cdot g[N]
$$

$$
\longrightarrow \text { Gravitacional acceleration }\left[\mathrm{m} / \mathrm{s}^{2}\right]
$$

$$
\text { Weight In Water }[k g]
$$

buoyancy

Detector	Property		Elements(*)		
		DOM	Long string	Top Buoy	
ARCA	$f\left[\mathrm{Ns}^{2} / \mathrm{m}^{2}\right]$	52.86	659.10	482.66	
	$W[N]$	125.57	0	1030.05	
ORCA	$f\left[\mathrm{Ns}^{2} / \mathrm{m}^{2}\right]$	52.86	283.92	482.66	
	$W[N]$	125.57	0	1226.25	

(*) The distance of cables between DOMs are not the same, so their f and W are calculate for each case

PROCEDURE TO RECONSTRUCTION

- What do we expect?

Improve the position in reconstruction of DUs taking into account the uncertainty and inconsistencies of measures and analysis.

Explanation

- How to obtain v and ω from the acoustic data?

$$
r(z)=\int_{0}^{z} g(z) d z=\frac{M_{M} M_{\text {const }}(\mathbf{z})}{q} z-\left(\frac{m q-n q}{q^{2}}\right) \ln \left(1-\frac{q}{p} z\right) \cdot v^{2}
$$

$$
\begin{gathered}
r(z)=M M_{\text {const }}(z) \cdot v^{2} \rightarrow v=\sqrt{\frac{r_{j}(z)}{M M_{\text {const }}(z)}} \\
\omega=\operatorname{atan2}\left(\operatorname{diff}_{y}, \operatorname{diff}_{x}\right)
\end{gathered}
$$

diff : Difference from item reference

PROCEDURE TO RECONSTRUCTION
 Results

PROCEDURE TO RECONSTRUCTION Results

Here, an example of reconstruction procedure is applied in a period of a week in ORCA-DU3:

The v is less than $15 \mathrm{~cm} / \mathrm{s}$ and ω of DOMs are between 290 and 5 degrees.

Reconstruction example in ORCA for a week period

CONCLUSIONS

- The APS and AHRS in KM3NeT provides the location and the orientation for all DOMs.
- The APS data analysis using the Mechanical Line Fit model is able to obtain the positions of DOMs even in the case of missing data. Moreover, a filtering process can be applied to discard anomalous data values from APS, AHRS or fitting parameters of the model (efficient sea current direction and velocity).
- In this work the analysis of the APS data procedure have applied to reconstruct the locations of piezo-ceramics.
- The final implementation of the Mechanical Line Fit model is still in progress, and will be applied to obtain the location of the center position and the orientation for every DOM. Once all this is being defined, an automatic procedure for the monitoring of the position and orientation of all DOMs in KN3NeT will be implemented.

THANKS FOR YOUR ATTENTION

Dídac D.Tortosa
on behalf of the KM3NeT collaboration

e-mail: didieit@upv.es
PhD student

CAMPUS DE GANDIA
$\rightarrow \square$

