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Abstract: Alcohol addiction is the third leading lifestyle-related cause of death in the United States.
There are not enough support tools for alcoholics who want to quit alcohol consumption. The detection of
drinking in a free-living environment may improve the just-in-time adaptive intervention to this behavior.
Traditional methods to detect alcohol consumption suffer from long response time that hinders prompt
intervention and prevention. This paper proposes to employ inertial sensors to automatically detect
drinking of alcohol by leveraging the hand gesture characteristics that are specific to drinking. Due to
the lack of publicly available sensor dataset of alcohol drinking, this paper focused on the detection
of general beverage drinking by exploiting the hand gestures. A public dataset containing seven daily
activities (including hand-related activities such as eating, drinking, smoking, etc.) collected from 11
subjects in a controlled environment was adopted for this study. The detection model was developed
using deep neural networks containing both convolutional and recurrent neural networks. The proposed
approach achieved an F1-score accuracy of 87% in the Leave-One-Subject-Out (LOSO) cross-validation.
We argue that contributions of this paper would be useful when an alcohol specific dataset becomes
available.

1. Introduction

According to the WHO, alcohol use disorders, including alcohol dependence (AD) are the widespread
public health problems those have resulted in millions of deaths per year. Alcohol usage not only causes
severe adverse effects on the brain, liver, heart, and pancreas but also causes productivity loss, health care
expenditures, motor vehicle accidents, crime, and other related costs [1,2]. Internationally, approximately
16% of drinkers engage in heavy episodic drinking (defined as consuming 60 g or more of alcohol
per occasion), and the prevalence of AD exceeds 5% in many countries [3]. Detection of drinking in
free-living could improve just-in-time interventions aimed at the control of over-drinking, and reducing
alcohol-related diseases and injury. The most accurate measure of alcohol intoxication is a direct evaluation
of blood alcohol concentration (BAC) [4,5]. But this is an invasive method and may not be practical for
continuous monitoring. The other approach is the use of breath-analyzers that correlate to BAC through
breath alcohol concentration (BrAC). Although this method is available for portable devices, it is not
practical for continuous monitoring, and the measurement could be inaccurate due to external and internal
factors such as humidity and temperature [6,7]. Recently, on-body electrochemical alcohol measurement
from biofluids such as sweat and interstitial fluid (ISF) have drawn significant attention. The studies show
that there is a close correlation between sweat alcohol concentrations and metabolites in ISF, and blood
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alcohol level [8,9]. Transdermal alcohol concentration (TAC) monitoring systems use excreted alcohol (1̃%
of consumed alcohol) through the skin as vapor state insensible sweat [10]. SCAMTM, WrisTSTM, BACtrack
and ProofTM are general alcohol monitoring platforms that utilize transdermal approach. However, the
response time of the TAC monitoring systems is one or more hours slower than the response time of
BrAC [11] based systems. Additionally, TAC-based measurements may generate false detection from
external alcohol-containing vapors (i.e. bar scenario, paint, etc.). In recent studies [12–14], gait analysis
based-methods were used to detect alcohol consumption employing inertial sensors (accelerometer and
gyroscope) of smartphones. These studies show that approximately twenty minutes after the initial alcohol
consumption, alcohol that penetrates the blood-brain barrier affects the psychomotor performance [15].
Sun et al. [16] has investigated the emotional and physiological (heart rate, breathing rate, skin temperature,
and activity) data related to drinking. Bae et al. [17] have used smartphone sensor, time and usage data for
real-time detection of drinking in young adults. Day of the week, time of day, activity, screen duration, call
duration, and typing speed were used as features.

In summary, the common drawback of previous studies was the long response time as those
approaches were based on the measurement of biological and physical effects of alcohol. Instead of
relying on time-demanding biological and physical effects of alcohol consumption, this paper proposes
to detect alcohol drinking from hand gestures specific characteristic that are related to drinking. The
current success of wearable sensors (especially inertial sensors) in the detection of hand-related activities
indicates an inertial sensor placed on the wrist may objectively detect drinking events. However, there is
no public dataset available on this regards to validate this hypothesis. Before conducting a human study
involving an alcoholic person and thereby collect data, this study intended to test the proposed method
on the detection of drinking generic beverages. Hence, a publicly available dataset that has several daily
activities including drinking was adopted and a deep learning based model was developed to distinguish
drinking from other daily activities.

The main contributions of this paper are:

∗ We investigated to what extent drinking can be automatically discerned from other daily activities.
∗ We proposed a Convolutional neural network (CNN)-Long Term Short Memory(LSTM) model which

can distinguish drinking from eating and smoking activities in different postures.
∗ We proposed a model which could detect drinking within 100 seconds of alcohol consumption.

2. Related Work

According to our best knowledge, there is no hand gesture dataset for specifically alcoholic beverage
drinking. Hence, the literatue review was limited to generic beverage consumption. In [18], the authors
recognized the drinking activities by using random forest (RF) and support vector machine (SVM). In the
same dataset, they reached F1-score of 0.78 for person-independent validation. In [19], the authors utilized
the inertial signal from one wrist device. By using an SVM classifier, drinking with glass and cup were
classified with an F1-score of 0.57 and 0.67 in LOSO validation, respectively. By adding a smart ring on
the index finger, these scores reached to 0.93 and 0.92 respectively. In [20], five inertial sensors ( attached
to the wrists, upper arms and on the upper torso) were used for activity recognition. With a Hidden
Markov Model (HMM), the drinking activity was classified with an F1-score of 0.85 in person-dependent
validation.However, these two dataset does not contain any smoking activity which a critical hand related
activity involves both hand and mouth.
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3. Methodology

3.1. Dataset

We used a public dataset which was presented in [18]. This dataset contains seven different activities
(standing, sitting, drinking while sitting, drinking while standing, eating, smoking while sitting and
smoking while standing) performed by eleven participants. The data is collected by using a smartwatch
application (LG Watch R, LG Watch Urbane, Sony Watch 3). 6D IMU data (accelerometer and gyroscope)
were recorded at a sample rate of 50Hz. During the drinking activity, participants had a cup of coffee or
tea while sitting or standing while been in a group conversation. The dataset contains approximately 45
hours of data. The start and end of each activity were labeled by participants who made a waving gesture.
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Figure 1. An example of the acceleration signals (x,y,z) during a drinking event.

3.2. Recognition Algorithm

Figure 2. The overall pipeline of the proposed CNN LSTM model for drinking activity.

In this paper, we aim to detect drinking cycle in daily activities. Each drinking cycle can be modeled
as a sequence of specific hand movement. Typically a drinking activity starts with the holding a cup or
bottle, raising of the container to the mouth, then tilting the wrist up to drink. It continues withholding
the cup at the mouth for a while. This cycle finishes with a downward motion of the hand from the mouth.
Figure 1 illustrates a characteristic pattern in the responses of the accelerometers while a person drunk
with the dominant hand.

Recently, deep learning gained popularity in many areas [21]. CNNs are a type of deep neural
network with the ability to act as feature extractors. Such networks are able to learn multiple layers of
feature hierarchy automatically. However, CNNs are not able to learn sequential correlations. On the other
hand, LSTM recurrent neural networks are well suited to model temporal dynamics. The combination of



Proceedings 2019, 2019, 6 4 of 7

CNNs and LSTMs has offered state-of-art solutions for time series problems such as speech recognition
and human activity recognition [22,23]. The idea in this work is to use the temporal-sequential dependency
of hand gestures for drinking detection. The method presented in this study has two main neural network
stages. In the first stage, a CNN act as a feature extractor. CNN layers can estimate the abstracted features
of the hand gestures that take place during fixed-size overlapping windows of raw sensor streams. CNN
part of the proposed model consists of 3 one-dimensional convolutional layers and a fully connected
layer with 32 units. Each of the convolutional layers is followed by a batch normalization layer, rectified
linear units, and max-pooling operation layer with a decimation factor of 2. To prevent overfitting during
training, a dropout layer was used after fully connected layer with 50% dropout change. We used 128,
64, and 32 filters in convolutional layers. The filter size of all convolutional layers is half of their input
data size, which corresponds to 10.24 seconds at a sampling rate of 50 Hz. The second step deals with the
classification of window sequences as drinking or not, via the LSTM network. The proposed recurrent
network consists of two consecutive LSTM layers with 64 hidden cells and one fully connected layer with
a single neuron. The LSTM layer takes the CNN output as an input, with a sequence length of 10 samples
and one sample step. 10 samples windows length correspond to 100 seconds. The network was trained
by the dataset using the sliding window approach. The length of the window was 512 samples, with
50% overlap. In the training process, stochastic gradient descent with momentum (SGDM) optimizer was
used with a learning rate of 10-3, three epochs and a mini-batch size of 16. Figure 2 shows the overall
architecture of proposed method.

The training was performed on a MATLAB 2018b environment installed on a windows 10 computer
equipped with an Intel core i9 9th generation CPU with 32GB DDR4 RAM, and an NVIDIA GeForce RTX
2080Ti GPU with 12GB memory.

3.3. Evaluation

Leave-out-one-subject cross-validation was performed to evaluate the performance of the detection
model. Having a dataset from 11 subjects, 10 were used as the training of the models, and the remaining
one subject’s data were used for testing. This procedure was repeated 11 times. Precision, recall, F1-score,
accuracy, true positives (TPs), false positives (FPs), true negatives (TNs) and false negatives (FNs) were
computed as performance metrics.

4. Results

Table 1 shows the confusion matrix of the proposed algorithm for drinking detection for each segment.
Overall performance of the proposed method is summarized in the table 2. Figure 3 shows the false
positive percentage of each activity in the total false positives.

Table 1. Confusion matrix of drinking detection algorithm

Prediction
Drinking Non-drinking

A
ct

iv
it

y

Drinking+Standing 6200 1130
Drinking+Sitting 6375 957
Eating 227 3443
Sitting 64 3608
Smoking+Standing 242 3433
Smoking+Sitting 951 2718
Standing 15 3652
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Table 2. Overall performance metrics of drinking detection algorithm

Accuracy Recall Precision F1-score
0.89 0.85 0.89 0.87

Figure 3. False positive percentage of each non-drinking activity.

5. Discussion

The performance scores of the proposed model show that drinking activity is easily detectable by
using hand movements. According to the Figure 3, smoking while sitting is the most challenging task
of the developed algorithm to separate from drinking. Drinking and smoking while sitting can be more
similar to each other than other activities. Although eating activity contains similar hand gestures, the
proposed algorithm differentiated drinking easily from eating. This study has some limitations that can be
addressed in future studies. The dataset included only drinking of coffee and tea. In order to improve
assessments and comparison, a more realistic dataset obtained from the drinker’s natural environment
representing a broader range of alcohol drinking activities should be used. Further, this study was based
on data extracted exclusively from IMU sensors. An extended analysis using a combination of multiple
sensors, for example, heart rate, Electromyogram for physiological signals during smoking activity, may
enhance the precision and accuracy of the system. Not only individual sensor signals but also additional
information such as time of day and day of the week may improve the detection performance.

In the study, the effect of the model parameters, the number of convolutional layers, feature map size,
and kernel filter size were not investigated. In the future study, these parameters can be examined for
improving the performance of the model. In addition, a fixed-size of sliding windows (512 samples) was
used in the study. As a future study, the various size of the window would be investigated for optimized
performance. The proposed algorithm can be implemented in a smartphone, smartwatch or a cloud-based
server to continuously analyze real-time sensor signals for Just-In-Time Adaptive Intervention systems.

6. CONCLUSIONS

In this paper, we studied the detection of drinking activities by using inertial sensor signals as a
preliminary study of alcohol beverage drinking recognition. Drinking activities were detected by using a
CNN-LSTM based deep neural network with an average of 89% accuracy. This result is encouraging for
an initial effort to aim alcohol drinking detection. In the future, we would like to gather more realistic data
from drinkers who consume different type of alcohols in the real-life environment.

Funding: This work was not supported by any organization.
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