An Improved Synthesis of Key Intermediate to the Formation of selected Indolin-2-ones Derivatives Incorporating Ultrasound and Deep Eutectic Solvent (DES) Blend of Techniques, for some Biological Activities and Molecular Docking Studies

MohdImran¹, Md. AfrozBakht^{2,*}, Abida, Md. T. Alam¹, ElHassaneAnouar², Mohammed B. Alshammari², NoushinAjmal³, ArchanaVimal⁴, Awanish Kumar⁴and YassineRiadi⁵

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, P.O. Box 840 Kingdom of Saudi Arabia; M. I (imran inderlok@yahoo.co.in); A(aqua abkhan@yahoo.com) M. T. A. (tauquirpharm@gmail.com)

- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; M. A. B. (m afroz007@yahoo.com); E. A (anouarelhassane@yahoo.fr); M. B. A. (m.alshammari@psau.edu.sa)
- Department of Basic Sciences and Humanities, Pratap University, Jaipur, 303104, Rajasthan, India; N. A (noush.biochem04@gmail.com)
- Department of Biotechnology, National Institute of Technology Raipur C. G., India; A. V (avimal.phd2013.bt@nitrr.ac.in); A. K (awanik.bt@nitrr.ac.in)
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Y. R (yassinriadi@yahoo.fr)

We have developed a new idea to synthesize key intermediate molecule by utilizing deep eutectic solvent (DES) and ultrasound in a multistep reaction to ensure process cost-effective. Key intermediate (3) and final compounds (4a-n) were synthesized in a higher yield of 95% and 80-88% respectively. Further, final compounds (4a-n) were assessed for their anti-inflammatory, analgesic, ulcerogenic and lipid peroxidation. The compounds 4f, 4g, 4j, 4l, and 4m showed good anti-inflammatory activity, while 4f, 4i, and 4n exhibited very good analgesic activity as compared to the standard drug. The ulcerogenicity of selected compounds was far less than the indomethacin. The ligands had also shown a good docking score (4f = -6.859 and 4n = -7.077) as compared to control indomethacin (-6.109). State-of-art DFT theory was used to validate the lipid peroxidation mechanism of the active compounds which was in good agreement with the variations of BDEs and IP of the tested compounds.

Keywords: Thiazole-indole; DES; Ultrasound; anti-inflammatory; analgesic; ulcerogenic; lipid peroxidation; molecular docking; DFT

METHODOLOGY

Figure2. The binding site predicted where ligand is docked in COX-2 from (a) mouse (PDB ID 3NT1) (b) human (PDB ID : 5F19).

RESULTS

Table 1. Antiinflammatory activity of1-(Substituted phenyl amino methyl)-3 -(2-(4-(2-oxochroman-3-yl) thiazol-2yl) hydrazono) indolin-2-one (4a-n).

Table 2. Analgesic activity of 1 (Substituted phenyl amino methyl)-3 -(2-(4-(2-oxochroman-3-vl) thiazol-

Table 3.Ulcerogenic activity and lipid peroxidation of 1-(Substituted
 phenyl amino methyl)-3-(2-(4-(2- oxochroman-3-yl) thiazol-2- yl) hydrazono)indolin-2-one.

-(2-(4-(2-0X0CII	10111a11-5-y1) (IIIaZOI
2-yl)	hydrazono)indolin-2-on	e (4a-r

Compound	Mean writhe ± SEM	% Analgesic Activity (Dose = 10	Potency	Compou nd	% age inh rat paw ed = 10 m	ibition of ema(Dose gkg-1)	Potency
		mgkg-1)			2 Hour	4 Hour	
Indomethacin	8.55 ± 0.394	73.61 ± 0.315*	1.00	Indomet hacin	66.34 ± 0.051	82.05 ± 0.08	1.00
4a	17.00 ± 0.2582	$47.54 \pm$	0.64	4a	38.29 ± 0.016	5.57 ± 0.041	0.06
4b	24.00 ± 0.3651	25.94 ±	0.35	4b	59.29 ± 0.73*	45.81 ± 0.069	0.55
4c	13.00 ± 0.2582	59.88 ±	0.81	4c	59.29 ± 0 143*	30.17 ± 0.294	0.36
4d	18.50 ± 0.4282	0.8458° 42.91 ±	0.58	4d	51.92 ± 0.337	6.98 ± 0.315	0.08
4e	16.88 ± 0.222	47.91 ± 1.0000	0.65	4e	$62.24 \pm 0.080**$	48.60 ± 0.090**	0.59
4f	9.93 ± 0.386	1.0049^{*} 69.36 ±	0.94	4f	$48.377 \pm 0.219*$	72.42 ±	0.88
4o	20.09 ± 0.3561	0.5845° 38.01 ±	0.51	4g	$53.57 \pm 0.160*$	77.94 ± 0.18/***	0.94
-18 4h	23.83 ± 0.3073	1.0035^{**} 26.47 ±	0.35	4h	$35.39 \pm$	64.69 ± 0.245	0.78
4i	10.93 ± 0.3128	0.3165^{*} 66.27 ±	0.90	4i	$31.268 \pm$	63.95	0.77
41 41	17.13 ± 0.539	1.0072^{*} $47.14 \pm$	0.64	4i	$53.81 \pm$	10.210 77.906 ±	0.94
4k	29.83 ± 0.3073	$\begin{array}{c} 0.4018^{***} \\ 7.96 \pm 0.4318^{*} \end{array}$	0.10	ý 4k	$38.095 \pm$	70.75 ± 0.165	0.86
41	17.83 ± 0.3079	$44.98 \pm$	0.61	41	$54.76 \pm$	$80.94 \pm$	0.98
4m	21.83 ± 0.2051	0.3361^{*} 32.64 ±	0.44	 4m	0.228^{-4} 53.27 ±	0.149^{+++} 78.42 ±	0.95
4n	10.00 ± 0.3651	0.8454^{**} 69.14 ±	0.93	4n	0.183° 42.57 ±	$0.183^{\circ\circ}$ 69.58 ± 0.122	0.84

Compound	Severity Index	Nanomoles of MDA content ± SEM/ 100 mg tissue
Control	0.0	3.16±0.12*
Indomethacin	4.500 ± 0.316	6.71±0.18*
4c	$0.666 \pm 0.105^*$	4.26±0.12*
4f	$0.666 \pm 0.105^*$	4.08±0.22*
$4\mathrm{i}$	0.500 ± 0.129	3.89±0.17*
4n	$0.833 \pm 0.210^{*}$	4.81±0.13*

indolin-2-one using DES.

 Table 4. BDEs (kcal/mol) of i-NH

 groups of the In-H synthesized derivatives and its corresponding ionization potential energies calculated at the B3P86/6-31+G(d,p) level of theory.

Compoun d	IP (eV)	17-NH	26- NH	Lipid peroxidation Inhibition
4c	-5.96	62.03	72.58	4.08±0.22
$4\mathrm{f}$	-5.97	62.08	75.60	4.26±0.12
$4\mathrm{i}$	-6.04	62.05	72.84	3.89±0.17
4n	-5.80	62.05	72.02	4.81±0.13

Figure 1. The optimized structure with numbering of In-H synthesized derivatives

Figure3.The binding site predicted where ligand is docked in COX-2 from (a) mouse (PDB ID 3NT1) (b) human (PDB ID : 5F19)

(a) 4f

Figure6.Ligand interaction of test ligand with the target protein COX-2 from mouse (a) 4f (b) 4n (c) Indomethacin.

(c) Indomethacin

Figure 5. Docked ligand inside from the binding pocket of COX-2 from human (a) 4f (b) 4n (c) Indomethacin.

Figure 7. Ligand interaction of test ligand with the target protein COX-2 f rom human (a) 4f (b) 4n (c) Indomethacin.

One of the author (Mohd. Imran) is thankful to the Faculty of Pharmacy, JamiaHamdard, New Delhi, India for providing research facility for synthesis and experimental pharmacology. One of author thankful to Chemistry Department, College of science, Prince Sattam Bin Abdulaziz

ACKNOWLEDGMENT

In conclusion, an improved synthesis of key intermediate through the combined use of deep eutectic solvent and ultrasound is a rational approach to enhance the yield of desired compounds via an economically viable and environmentally acceptable way. Further, all the final compounds (4a-n) have been evaluated as anti-inflammatory and analgesic activities. Selected compounds were further tested for ulcerogenic and lipid peroxidation potential. Outre true commenced a claimed to be mean notant or anti inflammaters and analogoic melocule with the bighest

CONCLUSIONS