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Abstract: A single Neonicotinoids are considered to be one of the important classes of insecticides 

used at the present time. In this study the partial least squares (PLS) approach is applied to a series 

of nitromethylene, pyrrole- and dihydropyrrole-fused neonicotinoids to model their insecticidal 

activity (pLC50 values) against the cowpea aphids. The structures were modeled using the 

MMFF94s force field. A robust PLS model (3PCs, R2X(Cum) = 0.963, R2Y(cum) = 0.870 and 

Q2(Cum) = 0.796) with predictive power (CCCext = 0.873, 
2

mr = 0.680, 2

1FQ  = 0.805, 2

2FQ  = 0.802, 

2

3FQ  = 0.704) is obtained. New insecticides active against the cowpea aphids can be predicted. 
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1. Introduction 

Neuroactive insecticides are the principal means of protecting crops, people, livestock, and pets 

from pest insect attack and disease transmission [1]. Most insecticides are nerve poisons and have 

been introduced since 1940, followed later by several classes of compounds, including 

neonicotinoids in the 1990s [2, 3]. Neurotoxicants are the major synthetic insecticides for several 

reasons [4]. They act rapidly to stop crop damage and disease transmission. There are many 

sensitive sites at which even a small disruption may ultimately prove to be lethal. A lipoidal sheath 

protects the insect nerve from ionized toxicants but not from lipophilic insecticides. Poor 

detoxification mechanisms in nerves provide prolonged toxicant effects. 

Fundamental differences between the nicotinic acetylcholine receptor (nAChR) of insects on the 

one hand and mammals on the other confer remarkable selectivity to the neonicotinoids [5]. There is 

considerable inhibitor specificity between the acethylcolinesterase nerve target (AChE) of insects 

and mammals contributing to selective toxicity [4]. Photostabilized compounds selective for insects 

relative to mammals, commercialized as imidacloprid and six analogs designated neonicotinoids are 

highly insecticidal but the photolabile nithiazine with a nitromethylene moiety and no cationic 

substituent act as an nAChR agonist [1]. The guanidine or amidine unit is coplanar and 

electronically conjugated with the nitro or cyano substituent, which facilitates partial negative 

charge flow toward the tip. They act as agonists at multiple nAChR subtypes, with differential 

selectivity between insects and mammals conferred by only minor structural changes. Imidacloprid 

is not protonated, but its electronegative nitroimine extreme end may bind to a lysine or arginine 
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residue in a subsite of the insect nicotinic acetylcholine receptor [4]. Nicotine in contrast is 

protonated at physiological pH and undergoes cation-π interaction with the choline subsite of AChE 

for insect, at a nicotinic acetylcholine receptor subsite in mammals. Reactivation rates for inhibiting 

AChE may also vary for insects and mammals. Mammals have a second related enzyme, 

butyrylcholinesterase, abundant in blood plasma, which reacts with organosphophate and 

methylcarbamate toxicants and provides a protection not available to insects. 

The coplanar segment between guanidine or amidine and pharmacophore in the neonicotinoids 

can create an electronic conjugation to facilitate the partial negative charge flow toward the tip atom 

and increase the binding affinity to the insect target [6]. 

Neuroactive compounds have been the dominant insecticides for 50 years, and this is not 

expected to change in the foreseeable future [7]. The early neuroactive insecticides were effective, 

inexpensive, and often persistent, ideal properties for the selection of resistant strains. Resistance can 

be conferred by minimal (or even a single) amino acid substitution at the target site. Resistance 

problems with this first generation of neuroactive insecticides prompted the search for new 

neurotoxicants acting at different sites to circumvent cross resistance. This was outstandingly 

successful in case of chloronicotinyl compounds or synthetic nicotinoids with outstanding systemic 

properties that are exemplified by imidacloprid acting at the nAChR nicotinic acetylcholine receptor. 

These nicotinoids act at the same site in insects as nicotine but with much higher effectiveness and 

safety. No target site–associated cross-resistance problems exist, and accordingly the synthetic 

nicotinoids are outstanding replacements for the insecticidal organophosphorus compounds and 

methylcarbamate insecticide systemics in many uses for sucking insect pests of crops.  

One of the main success factors for neonicotinoids is their plant systemicity [5]. Applied into the 

soil or to the seed, the products are taken up via the roots, are distributed in the plant and give 

consistent and long-lasting control of sucking insects. Following foliar application, neonicotinoids 

penetrate into the leaf lamina and control pests on the lower side of the leaf owing to their good 

translaminar activity. Furthermore, they are distributed acropetally (xylem movement) and can 

protect new growing shoots. 

The development of neonicotinoids is provoked by the rapid resistance growing [8] and serious 

bee toxicity [9-11]. Thus, there is an urgent need for the development of novel, effective, 

neonicotinoid replacements. 

The target of the neonicotinoid insecticides is the nervous system of nAChR, as demonstrated 

by the quantitative relation between the neuroblocking activity and the insecticidal activity against 

American cockroaches [12]. In this study 23 variants of the key pharmacophore were built with the 

central ring conjugated to NCN, CHNO2, or NNO2 moieties, and demonstrated that the 

neuroblocking potency is proportional to the Mulliken charge on the nitro oxygen atom or cyano 

nitrogen atom. 

A previous MLR analysis [13] of a series of 24 nitromethylene, pyrrole- and 

dihydropyrrole-fused neonicotinoids [14, 15] (Table 1) emphasized the importance of Galvez 

topological charge index (JGI2, which means the topological charge index of order 2) and two 

GETAWAY descriptors. The partial least squares approach was applied to the same series of 

neonicotinoids to find out the neonicotinoid structural features that influence the insecticidal activity 

[16]. Higher topological, edge adjacency indices, and 3D-MoRSE descriptor values were found to be 

favorable for the insecticidal potency. 

This paper presents a quantitative structure-activity relationship (QSAR) study of a series of 

nitromethylene, pyrrole- and dihydropyrrole-fused neonicotinoids, active against the cowpea 

aphids, using the partial least squares (PLS) method. Structural insecticide parameters calculated for 

the minimum energy conformers are related to the insecticidal activity, expressed as pLC50 values. 

Based on the resulted PLS model new insecticide structures active against the cowpea aphids can be 

predicted. 
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Table 1. The neonicotinoid structures, the experimental (pLC50exp) and predicted (pLC50 pred) 

insecticidal activity values obtained using the PLS model. 

No Structure pLC50exp pLC50pred No Structure pLC50exp pLC50pred 

1 

 

5.21 5.08 13 

 

3.97 3.94 

2 

 

5.70 5.34 14 

 

3.79 3.93 

3* 

 

5.80 5.42 15 

 

4.25 4.40 

4 

 

5.71 5.35 16 

 

4.07 3.86 

5 

 

5.11 5.33 17* 

 

3.91 4.02 

6 

 

3.85 3.90 18 

 

3.98 4.05 

7 

 

4.55 4.83 19 

 

4.41 4.51 

8* 

 

4.52 4.85 20* 

 

3.82 4.10 

9 

 

4.41 4.77 21 

 

3.86 4.07 

10 

 

4.35 3.99 22 

 

4.04 4.12 

11 

 

3.96 4.00 23* 

 

3.58 4.09 



Proceedings 2019, 1, x FOR PEER REVIEW 4 of 9 

 

12* 

 

4.16 3.98 24 

 

3.72 3.46 

25 

 

4.46 4.47 

 

    

* Test compounds included in the PLS model. 

2. Methods  

2.1. Definition of target property and molecular parameters 

A dataset of 25 nitromethylene, pyrrole- and dihydropyrrole-fused neonicotinoids (Table 1) 

having the insecticidal activity (LC50, in mmol/L) against cowpea aphids (Aphis craccivora) [15, 17] 

was analyzed. pLC50 values were used as dependant variable. 

The neonicotinoid structures were pre-optimized using the MMFF94 molecular mechanics 

force field included in the Omega (Omega v.2.5.1.4, OpenEye Scientific Software, Santa Fe, NM. 

http://www.eyesopen.com) software [18, 19]. For conformer generation, the maximum number of 

conformers per compound set of 400 and an RMSD value of 0.5 Å were employed during the 

conformer ensemble generation.  

The conformers of minimum energy were then used to calculate the structural parameters, 

using the DRAGON (Dragon Professional 5.5, 2007, Talete S.R.L., Milano, Italy) and InstanJChem 

(Instant JChem (2012) version 5.10.0, Chemaxon, http://www.chemaxon.com) software. 

2.2. Partial Least Squares (PLS) method 

The Partial Least Squares (PLS) approach [20] was employed to relate the pLC50 values with the 

calculated structural descriptors, using the SIMCA (SIMCA P+12 12.0.0.0 2008, Umetrics, Sweeden, 

www.umetrics.com) program. The PLS approach leads to stable, correct and highly predictive 

models even for correlated descriptors. The quality of the PLS model was verified using the squared 

correlation regression coefficient R2(CUM), and the squared cross-validated correlation coefficient, 

Q2(CUM). The Variables Importance in the Projection (VIP) values and the sign of the variables’ 

coefficients were used to explain the activity mechanism. The leave-7-out crossvalidation procedure 

was employed to select the most significant principal components and to check the internal model 

validation. 

The Y-randomization test was employed to test the model robustness and overfitting. In this 

procedure the dependent variable is randomly shuffled using the same descriptor matrix. The 

obtained PLS models (after 999 randomizations) must have the minimal r2 and q2 values [21]. 

2.3. Model validation 

The dataset was divided randomly into training and test (24% of the total number of 

compounds) sets. Following compounds: 3, 11, 13, 14, 17 and 23 were included in the test set (Table 

1). 

Several criteria were used for testing the predictive model power: 
2

1FQ [22], 
2

2FQ [23], 
2

3FQ  

[24], the concordance correlation coefficient (CCC) [25] (having the thresholds values higher than 

0.85, [26]) and the predictive parameter 
2

mr  (with a lowest threshold value of 0.5) [27].  

The model overfit was checked using the Y-randomization test [28] and by comparing the 

root-mean-square errors (RMSE) and the mean absolute error (MAE) of the training and validation 

sets [29]. 
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 3. Results and Discussion 

The X matrix of neonicotinoid descriptors was analyzed using the PCA approach. A model with 

5 significant components (N = 25 and X = 1426) was obtained; the first three components explain 

75.7% of the information content. 

The PLS model developed for the entire set of compounds gave the following statistical results: 

R2X(CUM) = 0.872, R2Y(CUM) = 0.990 and Q2(CUM) = 0.731, obtained for seven principal components 

demonstrated the model overfit (
2

)CUM(XR  and 
2

)CUM(YR  are the cumulative sum of squares of all 

the X and Y values). Therefore the noise variables (e.g. coefficient values insignificantly different 

from 0) were excluded from this model. 

A robust model with three significant principal components, which explains 96.3% of the 

information content of the descriptor matrix (for 10 structural descriptors), with R2Y(CUM) = 0.87 

and  Q2(CUM) = 0.796  was obtained. The descriptor coefficients and the VIP values included in the 

final PLS model are presented in Table 2. 

The PLS model was validated by the following internal validation parameters: CCCtr = 0.930, 

CCCCV = 0.892, RMSEtr = 0.216, RMSECV = 0.269, MAEtr = 0.180, MAECV = 0.221, (tr is the notation for 

training and CV for crossvalidation). A stable PLS model was obtained. 

Highest contribution to the model is given by the 2D binary and frequency fingerprints 

descriptors. 

The prediction model power was checked using external validation parameters, calculated for 

the test set: CCCext = 0.873, RMSEext = 0.327, MAEext = 0.299, 
2

mr = 0.680, 
2

1FQ  = 0.805, 
2

2FQ  = 0.802, 
2

3FQ  = 0.704. They indicate the PLS model as having a good predictive power. 

The coefficient and VIP plots are presented in Figure 1 and Figure 2, respectively. 

Table 2.  The PLS coefficients in descending order of the VIP values*. 

No Variable ID* CoefCS[3] VIP[3] 

1 B03[O-O] 0.157 1.065 

2 B05[O-O] 0.157 1.065 

3 C-012 0.157 1.065 

4 F03[O-O] 0.157 1.065 

5 F05[O-O] 0.157 1.065 

6 Mor15m 0.256 1.038 

7 Xindex 0.193 0.914 

8 B09[C-O] 0.367 0.902 

9 Vindex 0.187 0.902 

10 X1A 0.218 0.886 

* B03[O-O] - presence/absence of O-O at topological distance 3 (2D binary fingerprints); B05[O-O] - 

presence/absence of O-O at topological distance 5 (2D binary fingerprints); C-012 – presence of the CR2X2 

fragment (R: any group linked through carbon; X: halogen, atom-centred fragments); F03[O-O] - frequency of 

O-O at topological distance 3 (2D frequency fingerprints); F05[O-O] - frequency of O-O at topological distance 5 

(2D frequency fingerprints); Mor15m - 3D-MoRSE - signal 15 / weighted by atomic masses (3D-MoRSE 

descriptors); Xindex - Balaban X index (information indices); B09[C-O] – presence/absence of O-O at topological 

distance 9 (2D binary fingerprints); Vindex - Balaban V index (information indices); X1A - average connectivity 

index chi-1 (connectivity indices). 
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Figure 1. Coefficient plot of the final PLS model. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. VIP plot for the final PLS model. 

 

 

The Hotteling’s T2 range plot (Figure 3) confirms the absence of leverage compounds and 

outliers. 

 

 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

X
1

A

V
in

d
e

x

X
in

d
e

x

M
o

r1
5

m

C
-0

1
2

B
0

3
[O

-O
]

B
0

5
[O

-O
]

B
0

9
[C

-O
]

F
0

3
[O

-O
]

F
0

5
[O

-O
]

C
o

e
ff
C

S
[3

](
p

L
C

5
0

)

Var ID (Primary)
SIMCA-P+ 12 - 2019-11-05 14:06:43 (UTC+2) 

 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

C
-0

1
2

B
0

3
[O

-O
]

B
0

5
[O

-O
]

F
0

3
[O

-O
]

F
0

5
[O

-O
]

M
o

r1
5

m

X
in

d
e

x

B
0

9
[C

-O
]

V
in

d
e

x

X
1

A

V
IP

[3
]

Var ID (Primary)
SIMCA-P+ 12 - 2019-11-05 14:07:41 (UTC+2) 



Proceedings 2019, 1, x FOR PEER REVIEW 7 of 9 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The Hotteling’s T2 range plot of the final PLS model. 

In the y-scrambling test performed for the PLS model, a significant low scrambled r2 (
2

scrr ) and 

cross-validated q2 (
2

scrq ) values were obtained for 999 trials. Figure 4 shows that in case of all the 

randomized models, the values of 
2

scrr  and 
2

scrq  for the PLS model were < 0.5 (
2

scrr /
2

scrq of 

0.113/-0.428). The low calculated 
2

scrr  and 
2

scrq values indicate no chance correlation for the PLS 

chosen model. 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure. 4. Y-scramble plots for the PLS model. 
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4. Conclusions 

The partial least squares (PLS) approach was used to study the insecticide activity against the 
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neonicotinoids. The structures were pre-optimized using the MMFF94 molecular mechanics force 

field. Structural descriptors were derived from the minimum energy conformers and were related 
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to the pLC50 values. 2D binary and frequency fingerprints descriptors had highest contribution to 

the PLS model. The resulted PLS model, having good statistical results and predictive power can be 

used for the design of new insecticides active against the cowpea aphids. 
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