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Abstract: JMAK (Johnson-Mehl-Avrami-Kolmogorov) equation is exponential equation inserted
power-law behavior on the parameter, which is widely utilized to describe relaxation process,
nucleation process, deformation of materials and so on. Theoretically the power exponent is
occasionally associated with geometrical factor of nucleus, which gives integral power exponent.
However, non-integral power exponents occasionally appear and they are sometimes considered as
phenomenological in the experiment. On the other hand, the power exponent decides the distribution
of step-time when the equation is considered as the superposition of step function. This work intends
to extend the interpretation of power exponent by the new method associating Shannon entropy of
distribution of step-time with the method of Lagrange multiplier in which cumulants or moments
obtained from distribution function are preserved. This method intends to decide the distribution
of step-time through power exponent, in which certain statistical values are fixed. The Shannon
entropy introduced the second cumulant gives fractional power exponents that reveal symmetrical
distribution function that can be compared with the experimental results. Various power exponents
in which other statistical value is fixed are discussed with physical interpretation. This work gives
new insight into the JMAK function and the method of Shannon entropy in general.
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1. Introduction

The stretched exponential function is descrinbed as follows,

f (t, K, β) = exp

[
−
(

t
K

)β
]

. (1)

It is widely applied to describe relaxation processes [1–5], kinetics of crystallization [6–9], deformations
of materials [10,11] so on. The name of stretched exponentials corresponds to the case for β < 1 while
the opposite case of β > 1 is called compressed exponential function. The latter case corresponds to
JMAK (Johnson-Mehl-Avrami-Kolmogorov) equation [6–9], and β is sometimes called Avrami constant.
In the context of JMAK equation, theoretically it is occasionally associated with geometrical factor
of nucleus. Avrami constant β is originated from the dimensionality in which nucleation occurs D,
which has following relation β = D + 1. The surface nucleation involving effectively two-dimension
gives β = 3, the homogeneous nucleation with three-dimension gives β = 4, which all should result
in integral constant [12]. However, occasionally non-integer, anomalous Avrami constants are found
[13–15]. This anomalousness is explained thorough the heterogeneity of dimensionality of nucleation,
and distribution of pre-existing nuclei, and nucleation rate [16–19]. The limitation to associate JMAK
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model with dimensionality of nucleus is designated [20]. These works suggest that JMAK equations
still demand interpretations.

On the other hand, Equation (1) mathematically corresponds to Weibull distribution in extreme
value theory [21–23]. It is the probability distribution function of which the rate of occurrence of
events varies with time, applied to the particle distribution and failure analysis for engineering. In
this context, the power exponent β controls the shape of distribution of event; it is sometimes called
shape parameter [24]. Time-compressed equation corresponds to Weibull distribution of which rate
of occurrence of event increases with time. Hence the power exponents decide the distribution of
occurrence.

It is suggested that theoretical models for Equation (1) involve the spatial-temporal heterogeneity.
Hierarchical constrained model involves the constraints among Ising spins[25], Trap model involves
the traps in the space in which Brownian motion occurs [26]. Evesque demonstrated that two molecules
reaction in fractal geometry gives fractional power exponent for Equation (1) [27].

Based on these reports and facts that β decides the distribution, the new method to estimate
the distribution is proposed, using Shannon entropy [28]. Shannon entropy [29] is utilized for the
probability density function to estimate the average amount of information content of the distribution,
which reflects the statistical homogeneity. Introducing Shannon entropy into the distribution function
obtained from Equation (1), if was found that the Shannon entropy to which first moment is introduced
has supremum at β = 1; it corresponds to single exponentials [28]. This result includes the insight on
the relation between stretched exponentials and single exponentials.

This method suggestive on the application of Shannon entropy into the kinetic equations.
Analyzing the method carefully, it consists of the maximum entropy estimation and Lagrange multiplier
with β as a parameter. Maximum entropy method is applied to estimate the optimal distribution
[31–33]. However, this method is different from general maximum entropy estimation [33] on the point
that the fundamental distribution function has already fixed as Equation (1). The time compressed
equation has already based then it estimate the optimal shape of distribution via β while the constraint
condition is introduced. This method decides β that gives optimal distribution of step times, which
depends on the given boundary condition.

Herein, this work intends to extend the previous method and attempt to explore the distributions
of Equation (1) in which certain statistical quantities are fixed. Then we attempt to discuss the physical
interpretation for obtained distributions.

2. Method: Maximum Entropy Estimation Method Based on JMAK Equation

The point that it is different from general maximum entropy estimation [33] is that the form of
equation has already fixed on Equation (1), JMAK equation. Thus, here we call this method Maximum
entropy estimation method based on JMAK equation. The method consists of two procedure. First is
introduction of Shannon entropy into the compressed exponential equation Equation (12). Second is
introduction to statistical quantity which corresponds to restricted condition.

At first, the integral equation is assumed as,

exp

[
−
(

t
K

)β
]
=
∫ ∞

0
D (τ) F (t− τ) dτ (2)

where F (t− τ) is step function. Then distribution function D (τ) is obtained as follows,

D (τ, K, β) =
β

K

( τ

K

)β−1
exp

[
−
(

t
K

)β
]

. (3)
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Shannon entropy is defined as,

H (K, β) =
∫ ∞

0
D (τ, K, β) ln

D (τ, K, β)

C
dτ (4)

where C is the constant for nondimensionalization. Then Shannon entropy of Equation (3) is given as
follows,

H (K, β) = γ

(
1− 1

β

)
+ ln

CK
β

+ 1 (5)

where γ is Euler constant. Now H (K, β) is function with two parameters K and β. To introduce the
constraint condition, K is now related with parameter β. Certain statistical quantity 〈ξ〉, which is
obtained using Equation (3) is given as

〈ξ〉 = Φ (K, β) . (6)

For example, 〈ξ〉 is first moment when Φ (K, β) =
∫ ∞

0 τD (τ, K, β) dτ. As 〈ξ〉 is constant, Equation (6)
can be reformalized as

K = K (〈ξ〉 , β) . (7)

Now K = K (〈ξ〉 , β) is a function with one parameter β. Following Lagrange multiplier method, then
we have

H (K, β) = H [K (〈ξ〉 , β) , β] = H (β, 〈ξ〉) . (8)

Equation (8) is Shannon entropy of which statistical quantity 〈ξ〉 is fixed. In order to get optimal
distribution, supremun of Equation (8) is identified as follows,

H (β∗, 〈ξ〉) = sup
β

H (β, 〈ξ〉) . (9)

β∗ gives the optimal distribution in which 〈ξ〉 is fixed.

3. Result and Discussion

3.1. Constraint Condition of n-th Moment

In the previous work, first moment was introduced to Shannon entropy Equation (5) to find
β∗ = 1 [28]. Here we discuss the case in which other moments (e.g., third moment, n-th moment)
are fixed. Moment gives the information of shape of function. First moment is mean value, second
moment is related with variance and so on.

N-th moment of Equation (3) is given as

〈Kn〉 =
∫ ∞

0
τnD (τ, K, β) dτ =

Kn

β
Γ
(

n
β

)
(10)

where Γ (x) is Gamma function.
By introducing n-th moment of Equation (3) into Equation (5), we have

H (β, 〈Kn〉) = γ

(
1− 1

β

)
− 1

n
ln Γ

(
n
β

)
+

(
1
n
− 1
)

ln β + ln C〈 Kn〉1/n + 1 (11)

We can easily estimates β∗ by differentiating above Equation (12) as follows,

dH (β, 〈Kn〉)
dβ

=
1
β2

[
γ + ψ

(
n
β

)
+ β

(
1
n
− 1
)]

(12)
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where ψ (x) is Digamma function. β∗ of each n-th moments are listed in Table 1. β∗ increases with n
and they are fractional number except for n = 1 and 3. These results seem trivial but third moment
can be related with volume in the case that t has space dimension. Rosin-Rammler distribution [34],
which corresponds to Equation (1), is applied for particle distributions. Rosin Rammler distribution
has β > 1. These moments can be related with physical quantity through distribution function.

Table 1. Table of each β∗ in which the entropy is maximized in each n-th moments.

n β∗

1 1
2 1.2994
3 1.5
4 1.6533
5 1.7784

10 2.1981
100 3.8527

1000 5.7403

3.2. Constraint Condition of Second Cumulant: Variance

Now let us see the Shannon entropy to which the variance of Equation (1) is introduced. The
variance of Equation (1) is

σ2 = K2

[
Γ
(

1 +
2
β

)
− Γ

(
1 +

1
β

)2
]

. (13)

Introducing Equation (13) into Equation (5), we have Shannon entropy of which variance is fixed,

H
(

β, σ2
)
= γ

(
1− 1

β

)
− ln β− 1

2
ln

[
Γ
(

1 +
2
β

)
− Γ

(
1 +

1
β

)2
]
+ ln C

√
σ2 + 1. (14)

The relation of H and β is described in Figure 1(a). The absolute value of H is relative depending on C.
Continuous Shannon entropy is relative to the coordinate system. Here we’re interested in the relative
value of entropy, particularly supremum value. β that gives supremum of H is 3.7673 · · · though H
shows plateau over β ' 3. Interestingly, β that have large values of entropy seems to be related with
symmetry of distribution as Figure 1(b) shows. The β having lower entropy (e.g., β = 0.5 ∼ 1.5) give
asymmetric distribution of τ while β having larger values (β = 3.76 ∼ 10) give symmetric distribution.
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Figure 1. (Color online) (a) Dependece of H introduced variance with β. (b) Comparison of distribution
of step time for different β vaules (β = 0.5, 1.0, 1.5, 3.76, 10). σ2 = 100, C = 1.
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The relation between distribution and variance was suggested in the relaxation of shrink of PNIPA
gels [30]. The relaxation process of PNIPA gels involves two-steps shrinking. First shrink undergoes
diffusion process that was described with a single exponential while second shrink can be described
compressed exponential having β = 2 ∼ 4.5. These reported β have largest Shannon entropy, which
suggests the correspondence. In the shrinkage of PNIPA gels, each part of gels undergoes the step-like
shrinkage, which corresponds to step-function. However, it is expected that the timing of shrinkage
has variations, which results in symmpetric distribution. This interpretation reinforce that the JMAK
relaxation of PNIPA gels involves the process in which the variance is fixed.

3.3. Constraint Condition of Third Cumulant: Skewness

The third cumulant, skewness reflects the asymmetry of distribution. The thrid cumulant is
obtained as follows,

c3 = K3

[
1
β

Γ
(

3
β

)
− 3

β3 Γ
(

2
β

)
Γ
(

1
β

)
+

2
β3 Γ

(
1
β

)3
]

. (15)

By introducing Equation (15) into Shannon entropy Equation (5) in the same way, we can estimate the
Shannon entropy of which skewness is fixed as

H
(

β, c3
)
= γ

(
1− 1

β

)
− 1

3
ln β3

[
1
β

Γ
(

3
β

)
− 3

β3 Γ
(

2
β

)
Γ
(

1
β

)
+

2
β3 Γ

(
1
β

)3
]
+ ln C 3√c3 + 1. (16)

Figure 2(a) is the dependence of Shannon entropy introduced skewness with β. β∗ has value
around 1.20 and decreases monotonically. The distributions of τ having β = 0.5, 1.2, 3.76 are compared
in Figure 2(b).
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Figure 2. (Color online) (a) Dependence of Shannon entropy of which skewness is fixed with β. (b)
Comparison of distribution of step-times τ for β = 0.5, 1.2, 3.76. c3 = 100, C = 1.

β∗ seemingly gives positive skewed distribution. Negative skew distribution has to be asymmetric
for left side but it is not possible for Equation (3).

4. Conclusions

In this work, the new method to obtain the distribution is attempted using Shannon entropy. The
point that it is different from general maximum entropy estimation [33] is that the form of equation
has already fixed on Equation (1), JMAK equation. The Shannon entropy of JMAK equation was firstly
estimated using distribution function D(τ), which is obtained by integral equation of which Kernel
F(t− τ) is step function. Introducing the certain statistical quantity, the Shannon entropy of which the
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the quantity is fixed was estimated. The optimal distributions are obtained by identifying β∗, which is
β that gives supremum of H.

The Shannon entropies introduced n-th moments gives β∗ fractional power exponents except for
first and third moments. The Shannon entropy which variance is introduced shows plateau over β = 3.
The value of entropy seems to reflect the symmetry of distribution of step times. The power exponents
observed in the shrinking of PNIPA gels have the value around 2 ∼ 4.5, which corresponds to the
distribution of largest entropies. Shannon entropy which third cumulant, skewness is introduced has
supremum at β∗ = 1.20, which gives the positive-skewed distribution.

The Shannon entropies which variance or skewness is introduced are quite interesting as its β∗

seems to give the distribution in which its constraint condition, variance and skewness is typically fixed.
There is a interpretation of maximum entropy. Kolmogorov-Sinai theorem [35] says that the partition
obtained by maximum entropy gives smallest subsets of generator. The distribution of τ corresponds
to the partition of step-times. If we follow the theorem, these distributions gives the generator in which
each constraint conditions, variance or skewness are fixed. The relation and interpretation based on
the Kolmogorov-Sinai theorem should be pursued for further development.

The method to decide β using Shannon entropy with Lagrange multipliers give the optimal
distribution of which physical quantity is fixed. The phenomnena which are described by JMAK type
equations may involve these constraint conditions.
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