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Abstract: The increasingly sophisticated investigations of complex systems require more robust 

estimates of the correlations between the measured quantities. The traditional Pearson Correlation 

Coefficient is easy to calculate but is sensitive only to linear correlations. The total influence between 

quantities is therefore often expressed in terms of the Mutual Information, which takes into account 

also the nonlinear effects but is not normalised. To compare data from different experiments, the 

Information Quality Ratio is therefore in many cases of easier interpretation. On the other hand, 

both Mutual Information and Information Quality Ratio are always positive and therefore cannot 

provide information about the sign of the influence between quantities. Moreover, they require an 

accurate determination of the probability distribution functions of the variables involved. Since the 

quality and amount of data available is not always sufficient to grant an accurate estimation of the 

probability distribution functions, it has been investigated whether neural computational tools can 

help and complement the aforementioned indicators. Specific encoders and autoencoders have been 

developed for the task of determining the total correlation between quantities, including 

information about the sign of their mutual influence. Both their accuracy and computational 

efficiencies have been addressed in detail, with extensive numerical tests using synthetic data. 

Keywords: machine learning tools; information theory; information quality ratio; total correlations; 

encoders; autoencoders 

 

1. Quantifying the Influence between Variables 

Causality is an essential element of human cognition. As a prerequisite to determining causal 

influences between quantities, their correlations have to be at least properly quantified. On the other 

hand, particularly when analyzing cross-sectional data, even the preliminary stage of determining 

the correlation between quantities can become a very challenging task. This is particularly true in the 

investigation of complex systems in presence of overwhelming amounts of data.  Modern scientific 

experiments are meant to provide information about every day more complex phenomena. They can 

also produce very large amounts of data. JET has the potential of producing 1 Terabyte of data per 

day, while ATLAS can generate 10 Petabytes of data per year [1].  
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Given this data deluge, the need to assess accurately the relation between the various measured 

quantities has become more pressing. The probability that important information remains hidden in 

the large data warehouses is indeed very high. The other main risk resides in the possible wrong 

evaluation of the influence between variables, which could lead to significant blunders [2].  

The most widely used tools to determine the relation between variables present some significant 

limitations; they either detect only the linear correlations or require large amounts of data and do not 

provide any hint about the directionality of the influence (see Section 2).  In this contribution, it is 

explored to what extent specific neural networks can help in at least alleviating some of these 

insufficiencies; these tools are introduced in Section 3. A comprehensive series of numerical tests with 

synthetic data has been performed. The results are reported in Section 4 for the liner correlations. The 

potential of the developed techniques to quantify total correlations are reported in Section 5. 

Conclusions and lines of future investigation are the subject of the last section of the paper.  

2. Correlation and Mutual Information between Variables 

A very common and computationally efficient indicator, to quantify the linear correlations 

between variables, is the Pearson correlation coefficient (PCC). The PCC has been conceived to 

determine the bivariate correlations between two quantities in the available data sets. The definition 

of the PCC, traditionally indicated by the Greek letter ρ, is: 

��,� =
���(�,�)

����
, (1)

where cov is the covariance and σ indicates the standard deviation of the variables. In the notation 

adopted in this paper, the variable Y is the dependent variable and X are the regressors.   

The main drawback of the PCC resides in the fact that it takes into account only the linear 

correlations. In the case of investigations involving highly nonlinear phenomena, as it is often the 

case in the science of complex systems, the conclusions, obtained from the analysis of the PCC, can 

therefore be highly misleading. To overcome this limitation, unbiased techniques for non-linear 

analysis are required. Information theory provides a very powerful tool to investigate the information 

transfer between quantities, the so-called Mutual Information [3]. This indicator can be considered a 

measure of the mutual dependence between two random variables X and Y; it quantifies the amount 

of information that can be obtained about one random variable from knowing a second random 

variable and includes nonlinear effects. The traditional symbol for the Mutual Information is I(X,Y) 

which for discrete variables is defined as: 

�(�, �) = −∑ ∑ �(�, �) ln �
�(�,�)

�(�)�(�)
��� , (2)

where P( ) indicates the probability density function (pdf) of the variables in the brackets. 

Unfortunately, the mutual information is not a normalised quantity. On the other hand, it can be 

rescaled to the interval [0-1], by dividing it for the joint entropy H(X,Y) defined as: 

�(�, �) = −∑ ∑ �(�, �) ln �(�, �)�� , (3)

In the literature, this new normalised quantity is called the Information Quality Ratio (IQR) [3]: 

��� =
�(�,�)

�(�,�)
, (4)

The Information Quality Ratio is a well consolidated quantity but, as can be seen from  

Equations (2) and (3), the estimation of the IQR requires the calculation of the probability density 

functions of the variables involved. This aspect renders the analysis more demanding, compared to 

the PCC, both in terms of efforts and requirements about the quality of the data. Fortunately, 

nowadays there are quite powerful tools to obtain the pdfs from the histograms of experimental data. 

The techniques used in this paper belong to the family of the “Kernel Density Estimation” KDE [4], 

which have been deployed also in [5,9] for the analysis of experimental data from Big Physics 
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experiments, using the methodology described [10,11]. The outputs of these KDE tools can be 

considered consolidated at this stage. On the other hand, density estimation remains a delicate 

operation. Moreover, the IQR is always a positive quantity and therefore does not shed any light 

about the directionality of the information transfer and therefore of the influence between the 

considered quantities.  

Given the previous considerations, it is reasonable to ask whether neural computation can help 

overcoming, or at least alleviating, the aforementioned limitations of PCC and IQR. In this 

perspective, in the framework of deep learning for image processing, many neural network 

topologies, such as encoders and autoencoders, have been recently extensively tested (see next 

section for a description of these networks); their properties could in principle be useful also in the 

analysis of the correlation between quantities [12]. In particular, it is worth assessing to what extent 

encoders and autoencoders can provide information about the total correlations between quantities, 

including directionality, and whether they can be more computationally efficient than traditional 

density estimators. 

3. The Technology of Autoencoders and Encoders for the Assessment of Correlations 

Autoencoders are feed forward neural networks with a specific type of topology, reported in 

Figure 1. The defining characteristic of auto encoders is the fact that the output is the same as the 

input [12]. They are meant to compress the input into a lower-dimensional code and then to 

reconstruct the output from this representation. To this end, an autoencoder consists of 3 components: 

encoder, code and decoder. The encoder compresses the input and produces the code, a more 

compact representation of the inputs. The decoder then reconstructs the input using this code only. 

The code constitutes a compact “summary” or “compression” of the input, which is also called the 

latent-space representation. 

 

Figure 1. General topology of autoencoders. 

In more detail, the input passes first through the encoder, which is a fully connected artificial 

Neural Network (ANN), and is translated into a code. The code is the input of the decoder, which is 

meant to produce an output, which is a similar as possible to the input. The decoder architecture is 

typically the mirror image of the encoder. Even if this condition is not an absolute requirement, it is 

typically the case (the actual indispensable requirement is that the dimensionality of the input and 

output is the same). Autoencoders can be trained via backpropagation as traditional ANNs. 

Overall there are four hyperparameters that need to be to set before starting the training of an 

autoencoder: 1) code size i.e., the number of nodes in the middle layer 2) the number of layers 3) the 

number of nodes per layer 4) the loss function. All these hyperparameters have to be set to optimize 

the autoencoders for the present application, i.e., the assessment of the total correlation between 

variables (inputs). To this end, a stacked autoencoder architecture has been adopted: the layers are 

stacked one after another. The actual architecture of the autoencoders implemented to obtain he 

results discussed in the next sections is reported in Figure 2. For the investigations reported in this 

paper, linear activation functions have been implemented. 
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Figure 2. Architecture of the autoencoders used in the present work. 

The architecture of the autoencoders is well suited to the determination of the total correlation 

between quantities. Another important type of correlation is the one between regressors and 

dependent variables. This is the case of regression, a very relevant case for both scientific and 

engineering studies. For this type of application, the topology of the so-called encoders is sufficient. 

Encoders can be thought of as just the first part of the autoencoder (see Figure 1) with the code of the 

same dimensionality as the dependent variable space.  

The basic elements of the proposed method, to obtain the correlations (linear or total), consists 

of adopting the architecture of Figure 2 (or of the simple encoder for the case of regression) and then 

of reducing the neurons in the intermediate layer until the autoencoder does not manage to reproduce 

the outputs properly (starting with a number of neurons equal to the number of inputs). After 

identifying the dimensionality of the latent space, the minimum number of neurons in the 

intermediate layer, for which the inputs are properly reconstructed at the output, a specific 

manipulation of the weights allows obtaining the required information. The operations of the weights 

differ depending on whether the linear or nonlinear correlations are investigated and therefore the 

details are provided in the next two sections. 

4. The Technology of Autoencoders and Encoders for the Assessment of Correlations 

Even if the main objective of the work consists of finding an alternative method to quantify the 

total correlations between quantities, a first analysis of the linear correlations is worth the effort. Being 

able to reproduce the PCC is useful to grasp the main elements of the approach and also to increase 

the confidence in the results. On the other hand, the PCC can be strongly affected by the noise present 

in the data; assessing whether neural computational tools can help in this respect is therefore quite 

valuable, particularly for scientific applications such as thermonuclear plasmas, whose 

measurements present quite high levels of uncertainties.  

To fix the ideas, let’s consider two examples involving three variables x1, x2 and x3. In the first 

case the correlation between the first two variables is of value unity (x2 = costx1); in the second case 

the correlation is reduced to 0.8 by the presence of random noise (x2 = costx1 + random), whose 

standard deviation is 20% of the actual signal standard deviation. In both examples the 

dimensionality of the latent space is 2. The matrix of the weights of the autoencoders can be expressed 

in matrix form as: 

� = �

��,� ��,� ��,�

��,� ��,� ��,�

��,� ��,� ��,�

�, (5)

To obtain normalized coefficients, so that the correlation coefficient of a variable with itself is 1, it is 

necessary to define e new matrix Λ, whose coefficients are: 

��,� = �
���,���,�

��,�
����,�

� , (6)
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The tables reported in Figure 3 provide a comparison of the correlation coefficients calculated 

with the PCC and with the proposed method of the autoencoders. As can be concluded by simple 

inspection of the numerical values in these tables, the proposed technique manages to exactly 

reproduce the PCC estimates in the case of absence of noise. When applied to noisy entries, the 

autoencoder seems to provide a better estimate of the expected off diagonal correlation coefficients. 

This is an interesting point which will be analyzed more extensively at the end of this section. 

  

Figure 3. Comparison of correlation coefficients for the two cases described in the text. 

A series of numerical tests has been performed to prove the generality of the conclusions 

obtained for simple cases. For examples, it has been verified that the approach remains valid in case 

of problems of larger dimensionality. An example of 10 variables is reported in the following. A set 

of 10 different variables have been generated: x1, x2, x3, x4, x5, x6, x7 are independent from each other. 

The remaining variables have been generated with the relations: x8 = costx1; x9 = costx2; x10 = costx3. 

As can be seen in the plots of Figure 4, the autoencoder manages to clearly identify the 

dimensions of the latent space. The minimum number of neurons in the intermediate layer for, which 

the autoencoder manages to reproduce the inputs with minimal errors, is 7. The matrix Λ of the 

correlation coefficients reproduces also exactly the one obtained with the application of the PCC, as 

shown in Figure 5. 

 

Figure 4. Trend of the errors in the reconstruction of the input data with the dimensionality 

of the intermediate layer in the autoencoder. 
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(a) (b) 

Figure 5. Left: the PCC for a set of 10 variables correlated as specified in the text. Right: the 

correlation coefficients obtained with the proposed method of the autoencoders. 

Systematic tests have also been performed to assess the robustness of the proposed approach to 

additive noise. Gaussian noise of various amplitude has been added to the variables. It is important 

to notice that the method based on the autoencoders has proved more resilient that the traditional 

PCC. In general, for linear correlations, the Pearson coefficient start declining for the standard 

deviation of the noise of the order of 20% than the amplitude of the signal, whereas the matrix Λ 

remains stable up to at least 60%of additive noise. A typical dependence of the off-diagonal terms of 

the matrix Λ and the traditional PCC, versus the percentage of noise, is shown in the plots of  

Figure 6. 

 

Figure 6. Trend of the off-diagonal term of the matrix Λ and the PCC versus the percentage 

of additive Gaussian noise. The noise intensify is calculated as the standard deviation of the 

noise divided by the standard deviation of the variable amplitude. 

4. Numerical Tests for Total Correlations 

The quantification of the total correlation between measurements poses some additional 

problems. First of all, if the influence between the variables includes nonlinear effects, the level of 

correlation depends on the range of the variables themselves. A simple example is a parabolic 

dependence, which is not only constant but whose sign also depends on the range of the variables. 

To address this issue, the procedure devised for assessing the linear correlations with the 

autoencoders has to be modified as follows. The determination of the latent space is the same. Once 

this step is completed, it is necessary to subdivide the range of the variables in sufficiently small 

intervals; on every one of these intervals the local correlation coefficient can be calculated as described 

Pearson

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x1 1.00 0.00 -0.02 0.01 0.03 0.00 0.00 1.00 0.00 -0.02

x2 0.00 1.00 0.00 0.02 0.00 0.00 0.00 0.00 1.00 0.00

x3 -0.02 0.00 1.00 0.00 -0.01 0.00 0.01 -0.02 0.00 1.00

x4 0.01 0.02 0.00 1.00 0.00 -0.02 0.01 0.01 0.02 0.00

x5 0.03 0.00 -0.01 0.00 1.00 -0.01 0.00 0.03 0.00 -0.01

x6 0.00 0.00 0.00 -0.02 -0.01 1.00 -0.01 0.00 0.00 0.00

x7 0.00 0.00 0.01 0.01 0.00 -0.01 1.00 0.00 0.00 0.01

x8 1.00 0.00 -0.02 0.01 0.03 0.00 0.00 1.00 0.00 -0.02

x9 0.00 1.00 0.00 0.02 0.00 0.00 0.00 0.00 1.00 0.00

x10 -0.02 0.00 1.00 0.00 -0.01 0.00 0.01 -0.02 0.00 1.00

Lambda - 7 neurone

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x1 1.00 0.00 0.01 0.00 0.00 0.00 0.00 1.00 0.00 0.00

x2 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.01

x3 0.01 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.01 1.00

x4 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

x5 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

x6 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

x7 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

x8 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

x9 0.00 1.00 0.01 0.00 0.00 0.00 0.00 0.00 1.00 0.00

x10 0.00 0.01 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
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in the previous section. The integral of these local correlation coefficients is the integral correlation 

indicated with int: 

���� =
�

∆�
∫|�(�)|��, (7)

Of course, as the IQR, this indicator does not provide any information about the sign of the 

correlation. To quantify this aspect, a good indicator is the monotonicity of the correlation, which can 

be defined as: 

���� =
�

∆�
∫ ������(�)���, (8)

To exemplify the potential of the proposed approach, Figure 7 reports the local correlation 

coefficient for a linear, a quadratic and a cubic dependence. For the first case, as expected for a linear 

dependence, both the integral correlation coefficient and the monotonicity have a value of one. For 

the quadratic case, the int is again practically unitary, whereas the monotonicity is almost zero. In 

the cubic case the ρint is against unity and the monotonicity -1. 

 

Figure 7. Top: two linearly dependent variables (left) and the relative local correlation 

coefficient ρ (right). Middle: two quadratic dependent variables (left) and the relative local 

correlation coefficient ρ (right).  Bottom: two variables with a cubic negative dependence 

(left) and the relative local correlation coefficient ρ (right). The integral values of the 

correlation coefficient and of the monotonicity are reported in the inserts. 
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The combination of the integrated correlation coefficient and the monotonicity is therefore much 

more informative than the simple IQR. The int represents very well the actual dependence between 

the variables; on the other hand, the monotonicity provide information about the direction and the 

constancy of the mutual influence; negative signs of the monotonicity indicate an inverse dependence 

and low values the fact that the mutual dependence changes sign over the domain of the variables.  

In terms of comparison with the IQR, Figures 8 summarizes a typical trend with the number of 

bins and the number of the entries in the database. As can be conclude from simple inspection of the 

plot, ρint provides a much better estimate of the correlation level between the independent and 

dependent variables (the actual value in the synthetic data is 1). The integrated correlation coefficient 

is also much more robust against the choice of the bins and the number of entries, two factors which 

affect a lot the IQR that is based on the details of the pdf.  

 

Figure 8. Comparison of the int and the IQR for the negative cubic dependence (third case 

of Figure 7). The x axis reports the number of bins and N is the number of generated points 

used to calculate the indicators. 

4. Conclusions 

An approach to the identification of the mutual influence between variables, using neural 

computational tools, has been proposed. The developed technique has been validated with a series 

of systematic tests with synthetic data. The use of autoencoders and encoders has provided very 

interesting results. For the determination of the linear correlations between quantities, the proposed 

method provides the same values as the PCC but it is significantly more robust against the effects of 

additive random noise. To investigate the total correlations between quantities, the combined used 

of the integrated correlation coefficient and the monotonicity has proved to be much more 

informative than the IQR. The int reflects quite well the actual dependence between quantities. The 

monotonicity provides very valuable information about the constancy of the mutual influence over 

the investigated domain. The int is also less sensitive to the details of parameters, mainly the number 

of bins, required to calculate IQR. The int is also less demanding in terms of quantity and quality of 

the data required, to provide reliable estimates of the mutual influence between quantities.  

With regard to future development, the technique for the investigation of the total correlations 

needs to be extended to the case of more variables. Conceptually this is not a problem. The main 

question remains the requirements in terms of amounts of data. The needs in terms of data amounts 

will obviously depend also on the quality of the inputs. This study will have therefore to be 

complemented with an accurate assessment of the effects of the noise.  In any case, the one-

dimensional studies and the preliminary indications of multi-dimensional tests unequivocally 

indicate that the proposed approach based on the autoencoders can handle much better sparse and 

noisy data. 
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