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Abstract: Software clustering is usually used for program comprehension. Since it is considered to be
the most crucial NP-complete problem, therefore, several genetic algorithms have been proposed to
solve this problem. In the literature, there exist some objective functions (i.e., fitness function) which
are used by genetic algorithms for clustering. These objective functions determine the quality of
each clustering obtained in the evolutionary process of genetic algorithm in terms of cohesion and
coupling. The major drawbacks of these objective functions are the inability to (1) consider utility
artifacts, and (2) apply on another software graph such as artifact feature dependency graph. To
overcome the existing objective functions limitations, this paper presents a new objective function.
A new objective function is based on information theory, aiming to produce a clustering in which
information loss is minimized. For applying the new proposed objective function, we have developed
a genetic algorithm aiming to maximize the proposed objective function. The proposed genetic
algorithm, named ILOF, has been compared to that of some other well-known genetic algorithms.
The results obtained confirm the high performance of the proposed algorithm in solving nine software
systems. The performance achieved is quite satisfactory and promising for the tested benchmarks.

Keywords: clustering; modularization; genetic algorithm; objective function; information theory;
software comprehension; software evolution

1. Introduction

Comprehending the code of a large and complicated program is hard and sometimes impossible.
Program understanding is an essential activity for application development and maintenance [1].
Software clustering is an effective method to improve the comprehensibility of the software architecture
and to discover the software structure [1]. In [2,3], the impact of software clustering on software
understanding and software evolution has been investigated. The software architecture extracting
aims to use clustering algorithms to partition an application from the source code into meaningful
and understandable segments [1]. In fact, this assists to understand the application in the software
maintenance process.

Most search-based software clustering algorithms use Artifact Dependency Graph (ADG) (or
Module Dependency Graph) for modeling a software system [4–11]. It is used for modeling the
relationship between artifacts (e.g., calling dependency between artifacts) and provides an abstract
view of software structure. In these graphs, the software system’s artifacts (such as class, function, file
and etc) are presented as nodes and their connections as edges. The end of software clustering is to
locate the artifacts within clusters, so that cohesion (i.e., connections between the artifacts of the same
cluster) is maximized and coupling (i.e., connections between artifacts of two different clusters) is
minimized [1,4,5]. Since the problem of finding the best clustering for a software system is an NP-hard
problem [5], genetic-based algorithms are applied to obtain a good clustering [5]. Figure 1 depicts an
ADG for an example software system that comprises six program files namely a− f and two utility
files namely g and h; and Figures 2 and 3 show two different clustering of it.
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Figure 1. A sample ADG.

Figure 2. An obtained clustering for Figure 1.

Figure 3. Another clustering for Figure 1.

Libraries and drivers are examples of utility artifacts. Libraries provide services to many of the
other artifacts, and drivers consume the services of many of the other artifacts. These files should be
isolated in one cluster in the clustering process because they tend to obfuscate the software’s structure
[11].

Several genetic algorithms have been developed to solve the software clustering problem. One
of the operators that largely affect the performance of a genetic algorithm in finding the appropriate
clustering is the objective function (other names are: fitness function or quality function). As the aim
of the genetic algorithm is to optimize the objective function. Several objective functions have been
developed in the literature for software clustering so that the existing evolutionary algorithms in this
context use these objective functions for clustering. Maximizing cohesion and minimizing coupling is
the overall goal of these functions. However, these objective functions have disadvantages in which
clustering found are not so acceptable. These disadvantages are: (1) there is no reason for a software
developer to use principles of maximum cohesion and minimum coupling in the development of a
software application; (2) almost there are a number of utility in every system that are not necessarily
dependent on each other, therefore, the existing objective functions in each different clustering locate
them in different clusters and thus they obscure the system’s structure; (3) objective functions available
are used only on graphs that have been created by relationship between artifacts, such as calling
operations, and cannot perform the clustering on other graphs that can be extracted from a program,
such as semantic graphs, or the graphs used in hierarchical clustering algorithms.

In this paper, using information theory and the concept of entropy, a new objective function is
proposed, which can solve the problems mentioned in the existing objective functions and improves
the quality of clustering. The aim is to propose a new objective function that an evolutionary algorithm
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(e.g., genetic algorithm) can use to put artifacts with the minimum information loss into the same
cluster.

The rest of this paper is organized as follows. Section 2 addresses the existing objective functions.
Section 3 describes the proposed objective function based on information theory. To validate the
performance of the proposed objective function, a genetic algorithm is adopted to optimize it in this
section. Section 4 compares the proposed algorithm. Finally, the conclusions and future work are
presented in Section 5.

2. Related Work

Software clustering (or software modularization) algorithms can be categorized into hierarchical
(e.g., see [12,13]) and non-hierarchical (including search-based methods and greedy algorithms)
categories.

In search-based clustering methods, the problem of clustering is counted as a search problem.
Since the software clustering problem is an NP-hard problem, evolutionary approaches such as genetic
algorithms are utilized to find the more qualified clustering. Most search-based algorithms aims
to find a modularization with maximum cohesion and minimum coupling. Objective functions in
search-based software clustering algorithms guide optimization algorithms to find a good clustering
for a software system. The two most popular objective functions are BasicMQ and TurboMQ [4]. If
Ai is an internal connection (internal edges) for a cluster and Eij represents connection level between
two clusters “i” and “j”, then having a program graph divided to “k” clusters, BasicMQ is defined as
follows:

BasicMQ =
1
k ∑ Ai −

1
k(k−1)

2
∑ Eij (1)

The BasicMQ has five shortcomings, as follows:

• the execution time of BasicMQ is high, which restricts its application to small systems,
• unable to handle the ADGs with weighted edges,
• only considers cohesion and coupling in the calculation of the clustering quality,
• unable to handle the non-structural features,
• unable to detect utility artifacts.

Let the internal relationships of a cluster and relationships between two clusters are respectively
denoted by µi and εi,j, TurboMQ is computed as follows:

TurboMQ =
k

∑
i=1

CFi (2)

CFi =
2µi

2µi +
k
∑

j=1
(εi,j + ε j,i)

(3)

The TurboMQ has three drawbacks, as follows:

• only considers cohesion and coupling in the calculation of the clustering quality,
• unable to handle the non-structural features,
• unable to detect utility artifacts.

Most search-based software clustering algorithms use BasicMQ and TurboMQ as objective function
such as E-CDGM [6], EDA [7], Bunch [4,8], DAGC [9], SAHC [8], NAHC [8], HC+Bunch [5], modified
firefly algorithm [14], MAEA-SMCP [15] and GAKH [16]. The limitations of using these objective
functions are mentioned before. In addition, there are a number of objective functions that we will
discuss below.
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In [17], two multi-objective functions namely MCA and ECA are proposed for clustering. The
objectives used in MCA include “maximizing the sum of intra-edges of all clusters”, “minimizing the
sum of inter-edges of all clusters”, “maximizing the number of clusters”, “maximizing TurboMQ”,
“minimizing the number of isolated clusters”; and the objectives used in ECA are the same as the MCA,
with the difference that instead of the last one, the “difference between the maximum and minimum
number of modules in a cluster (minimizing)”, has been used. These two objective functions also suffer
from the same TurboMQ drawbacks.

Huang and Liu in [18] stated that the BasicMQ does not take into account utility artifacts and edge
directions between two obtained clusters. Therefore, they proposed an objective function, to overcome
these limitations of BasicMQ. To evaluate the performance of the proposed objective function, they
developed three algorithms named hill-climbing algorithm (HC-SMCP), genetic algorithm (GA-SMCP),
and multi-agent evolutionary algorithm (MAEA-SMCP).

In [19], a PSO-based algorithm, named PSOMC, was proposed for software clustering. The
objectives used in PSOMC for clustering are the “intracluster dependency”, “intercluster dependency”,
“number of clusters”, and “number of module per cluster”.

In [20], a Harmony search-based algorithm, named HSBRA, was proposed for object-oriented
software systems clustering. The objectives used in HSBRA for clustering are “cohesion”, “coupling”,
11package count index”, and “package size index”.

3. Entropy-based Objective function

We use Figure 1 to illustrate how to calculate the new objective function. The corresponding data
table matrix for this graph is shown in Table 1. Rows of this matrix indicate the artifacts that will be
clustered and the columns indicate the number of features that characterize these artifacts. An entry, if
equal to “1” indicates the dependency between two artifacts and if equal to“0” indicates no relation
between them.

Table 1. Data table for Figure 1.

a b c d e f g h
a 0 1 1 0 0 0 1 1
b 1 0 1 0 0 0 1 1
c 1 1 0 0 1 0 1 1
d 0 0 0 0 1 1 1 1
e 0 0 1 1 0 1 1 1
f 0 0 0 1 1 0 1 1
g 1 1 1 1 1 1 0 0
h 1 1 1 1 1 1 0 0

To use the concepts of information theory [21] in the software clustering context, the data table
matrix should be normalized so that the elements of each row sum up to one. Let A be a random
variable that gains its values from the artifacts set {a1, a2, ..., an} and F represents a random variable
that gets its values from feature set { f1, f2, ..., fm}. Suppose M indicates a data table matrix, this matrix
can be normalized using Equation (4).

p( f j|ai) =
M[ai, f j]

∑ f∈F M[ai, f ]
(4)

p(x|y) = p(x, y)
p(y)

(5)

The normalized matrix for Table 1 is shown in Table 2. Each row of a normalized matrix represents
a feature vector for an artifact, which equals to the conditional probability: p(F|A = ai). In information
theory, the mutual information (MI) of two random variables measures how much one random variable
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tells us about another. More specifically, it quantifies the “amount of information" obtained about one
random variable, through the other random variable. MI between two random variables is computed
as follow:

MI(A, F) = ∑
ai , f

p(ai, f ) log
p(ai, f )

p(ai)p( f )
(6)

Table 2. Normalized matrix for Table 1.

a b c d e f g h
a 0 1/4 1/4 0 0 0 1/4 1/4
b 1/4 0 1/4 0 0 0 1/4 1/4
c 1/5 1/5 0 0 1/5 0 1/5 1/5
d 0 0 0 0 1/4 1/4 1/4 1/4
e 0 0 1/5 1/5 0 1/5 1/5 1/5
f 0 0 0 1/4 1/4 0 1/4 1/4
g 1/6 1/6 1/6 1/6 1/6 1/6 0 0
h 1/6 1/6 1/6 1/6 1/6 1/6 0 0

In information theory, higher entropy reflects more uncertainty; in contrast, lower entropy
represents more certainty. In the clustering problem, lower entropy is preferred. In the clustering of
software, it is ideal that the selection probability of each feature of an artifact is the same before and
after clustering.

Assume ai and aj are two artifacts before clustering and ai ∪ aj represents merging them after
clustering. Our aim will be to calculate the distance between ai and aj with ai ∪ aj (actually to know
how much information is lost). Let ai = p( f |ai), aj = p( f |aj), so we define:

p( f ) =ai ∪ aj = p( f |ai ∪ aj) =
1
2

p( f |ai) +
1
2

p( f |aj), f ∈ F (7)

Using Equations (4)–(7), the information loss between ai and aj, δI(ai, aj), is computed as follows:

δI(ai, aj) = ∑ f∈F[
1
2 p( f |ai) log p( f |ai)

p( f ) + 1
2 p( f |aj) log

p( f |aj)

p( f ) ]−∑ f∈F p( f |ai ∪ aj) log
p( f |ai∪aj)

p( f ) (8)

By substituting p( f ) (i.e., p( f |ai ∪ aj)) in Equation (8), δI(ai, aj) is calculated as follows:

δI(ai, aj) = 1
2 ∑ f∈F p( f |ai) log p( f |ai)

p( f ) + 1
2 ∑ f∈F p( f |aj) log

p( f |aj)

p( f ) (9)

δI(ai, aj) means that after clustering of ai and aj, what is the possibility to identify their features. We
used information theory to determine the distance between ai, aj with ai ∪ aj. In the following we
define information loss respectively for two artifacts, a cluster and a clustering.

Definition 1: Divergence for a cluster (denoted by DM)- for cluster k with nodes {1, 2, · · ·, n} is
computed as follows:

DMk =
∑n−1

i=1 ∑n
j=i+1 δI(ai, aj)

n
(10)

where n denotes the number of artifacts in a cluster.

Definition 2: Divergence for a clustering (denoted by MQ)- for an obtained clustering, it is computed
as follows:

MQ =
k

∑
i=1

DMi (11)
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The lower MQ indicates that less information is lost, so a proper clustering is obtained. We need to
convert this minimization problem to maximization one (see Equation (12)).

Definition 4: Objective Function- we define our new objective function as follows:

O.F. =
n

∑
i=1

n

∑
j=1

δI(ai, aj)−MQ (12)

where n is the number of artifacts.

To illustrate, Figures 2 and 3 represent the clusterings created by the Bunch algorithm and our
algorithm, respectively. As it can be seen, our objective function identifies the utilities and isolate them
while TurboMQ used in Bunch cannot identify them.

3.1. Genetic Algorithm

In the standard genetic algorithm, initially, a set of all solutions (known as the chromosomes) is
produced and then the chromosomes are assessed utilizing an objective function (fitness function).
Then until the end condition is satisfied, chromosomes are chosen and crossover and mutation
operators are done on them respectively and the previous solutions are replaced by the new solutions.
In our proposed genetic algorithm, the initial population (i.e., the set of all solutions) is generated
randomly. We employ the encoding method used in the Bunch algorithm [4,8]. In this method, the
number of gens in each chromosome is equal to the number of artifacts. The content of each gene
represents the cluster number that the artifact has to allocate to it. This value ranges between one
and the number of artifacts. For example, Figure 4 illustrates a sample encoding and Figure 5 shows
obtained clustering for that.

7 6 5 4 3 2 1 Artifact Number 
3 3 2 2 2 1 1 Cluster Number  

 

Figure 12: The chromosome structure for a sample ADG 

 

Figure 4. The chromosome structure for a sample ADG.

Figure 5. Obtained clustering for a sample string S = 1122233.

The objective function. The objective function has a great impact on the performance of the genetic
algorithm to find a suitable solution. The objective function measures the quality of each clustering
achieved during the evolutionary process of the genetic algorithm. To calculate an obtained clustering
quality, we use Equation (12). The designed genetic algorithm aims to maximize the proposed quality
function.
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4. Results

For evaluating and comparing the effect of the proposed objective function, we choose nine
real-world applications. The descriptions concerning these applications are presented in Tables 3.

Table 3. The description of tested software systems

Software System Description #Artifacts #Links
compiler A small compiler developed at the University of Toronto 13 32

nos A file system 16 52
boxer Graph drawing tool 18 29
ispell Spelling and typographical error correction software 24 103
ciald Program dependency analysis tool 26 64
cia Program dependency graph generator for C programs 38 87

grappa Genome Rearrangements Analyzer 86 295
acqCIGNA An industrial software 114 188

cia++ Dependency graph generator for C++ programs 124 369

For evaluating the achieved clustering by an algorithm, internal metrics are employed [1]. Internal
metrics measure how well the clusters are separated. We use the silhouette coefficient, denoted by SC,
and separation criteria for internal evaluation [1]. Let n denotes the number of artifacts, Table 4 gives
the parameter tuning for the experiments. In a genetic algorithm, the number of generations is usually
greater than the population size. Therefore, we have followed this principle in the proposed algorithm,
and we also considered this value linearly and a coefficient of the number of artifacts.

Table 4. The parameter setting for experiments.

Parameters Value
Population size 10n

Generation 200n
Pc (crossover rate) 0.8
Pm (mutation rate) 0.05
Selection operator Roulette wheel selection

Crossover operation One-point
Mutation operation randomly changed a gene

In Table 5, the proposed algorithm, named ILOF, is compared on nine software systems with five
algorithms in terms of SC and Separation. We chose the mean of results for each algorithm over 20
independent runs. The results demonstrate that the clustering achieved with ILOF are higher quality
than those achieved with other algorithms for all the ADGs in terms of SC and separation. According
to the definition of SC and Separation, their values should be as high as possible (close to one). In all of
these cases, it appears that the proposed algorithm is better able to separate the clusters with the new
objective function.

Table 5. Comparing the proposed algorithm against five search-based algorithms

Algorithms Bunch DAGC EDA ECA GA-SMCP ILOF
Software systems SC Separation SC Separation SC Separation SC Separation SC Separation SC Separation

Compiler 0.204 0.487 0.204 0.487 0.204 0.487 0.204 0.487 0.201 0.406 0.405 0.821
nos 0.14 0.574 0.069 0.459 0.14 0510 0.291 0.628 0.13 0.566 0.433 0.690

boxer 0.205 0.550 0.095 0.431 0.205 0.550 0.205 0.550 0.221 0.558 0.358 0.610
ispell 0.051 0.441 0.063 0.487 0.161 0.491 0.91 0.610 0.050 0.398 0.333 0.872
ciald 0.217 0.545 0.087 0.434 0.217 0.512 0.321 0.573 0.217 0.521 0.364 0.750
cia -0.004 0.577 -0.194 0.460 0.003 0.464 0.005 0.600 0.008 0.581 0.28 0.831

grappa 0.082 0.554 0.245 0.786 0.082 0.563 0.422 0.536 0.082 0.494 0.249 0.590
acqCIGNA -0.167 0.525 -0.329 0.435 0.001 0.510 0.031 0.530 -0.209 0.369 0.049 0.590

cia++ -0.012 0.544 -0.323 0.450 0.002 0.610 0.012 0.534 0.002 0.508 0.049 0.621
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5. Conclusions

This paper presents a new objective function based on information theory. Like other objective
functions (such as TurboMQ), the proposed objective function can be used by evolutionary approaches
for software clustering. To use the proposed objective function, we have developed a genetic algorithm
that can maximize the proposed objective function. The results showed that the results of the proposed
objective function are very promising.

The following suggestions are made for future work:

• Evaluating the presented objective function on other real-world applications with differing sizes
from various fields.

• Use of other formulas of entropy as an objective function and addressing the obtained results.
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