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Abstract: The development of systematic coarse-grained mesoscopic models for complex molecular
systems is an intense research area. Here we first give an overview of different methods for obtaining
optimal parametrized coarse-grained models, starting from detailed atomistic representation for high
dimensional molecular systems. We focus on methods based on information theory, such as relative
entropy, showing that they provide parameterizations of coarse-grained models at equilibrium by
minimizing a fitting functional over a parameter space. We also connect them with structural-based
(inverse Boltzmann) and force matching methods. All the methods mentioned in principle are
employed to approximate a many-body potential, the (n-body) potential of mean force, describing
the equilibrium distribution of coarse-grained sites observed in simulations of atomically detailed
models. We also present in a mathematically consistent way the entropy and force matching methods
and their equivalence, which we derive for general nonlinear coarse-graining maps. We apply, and
compare, the above-described methodologies in several molecular systems: a simple fluid (methane),
water and a polymer (polyethylene) bulk system. Finally, for the latter we also provide reliable
confidence intervals using a statistical analysis resampling technique, the bootstrap method.
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1. Introduction

The enormous range of length and time scales involved in complex materials presents a
challenging computational task, mainly, due to a wide range of relaxation times. A standard
methodology to overcome problems of long relaxation times is to abandon the chemical detail and
describe the molecular system by fewer degrees of freedom. Thus, systematic coarse-grained (CG)
models are developed by averaging out the details at the molecular level, and by representing groups
of atoms by a single CG particle. The challenge is to derive reliable coarse models both for reproducing
the structural and the dynamical properties of systems. That is, to identify and effective approximate
force field, approximating the potential of mean force (PMF), and then approximations to kinetic
coefficients such as the friction.

Methods to approximate the PMF are well studied in the literature. Examples include: (a) The
Boltzmann inversion methods, also known as structural-based, which rely on matching the radial
distribution function. [1–6]. (b) The information theory based variational inference method relies on the
minimization of the relative entropy (RE) between the configurational distributions of the system and
the approximate one, [7–10]. (c) The Force Matching (FM) relies on minimizing the distance between
the forces exerted on the CG particles and the approximate ones [11–13]. Recently, we have introduced
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a path-space variational inference methods were introduced, capable of inferring dynamical models of
coarse-grained systems, [9,14]. There the Relative Entropy Rate (RER) is defined as the appropriate
quantity to infer the coarse dynamics for stationary system, while the path space force matching.

The purpose of the current work is to present a short review of the information theoretic
methodologies ( relative entropy, and relative entropy rate) and their relation to the force matching
and path-space force matching methodologies, through the application to different molecular systems.

2. Methodology

Let a prototypical problem of N classical atoms in a box of volume V at temperature T. We denote
q = (q1, ..., qN) ∈ R3N the position vector and p = (p1, ..., pN) ∈ R3N the momentum vector of the N
atoms. The probability of an elementary configuration q is given by the Gibbs probability,

µ(q) = Z−1 exp{−βU(q)} , (1)

where U(q) is potential energy of a state q, Zis the normalization constant (partition function), and
β = 1

kBT with kB the Boltzmann constant and T the temperature. In the above relation the kinetic
part of the Hamiltonian has been integrated out. Coarse-graining (CG) is a standard methodology
to overcomes the large range of length and time scales by averaging out the details of the atomistic
level at the molecular level through representing groups of atoms by a single particle. The CG map
Π : R3N → R3M determines the position vectors of M CG particles (or beads) q̄ = (q̄1, ..., q̄M) ∈ R3M.
Note that M < N but still M >> 1. From now on, we will use the bar "¯" notation for objects related to
the CG model. The probability that the CG system has configuration q̄ is given by

µ̄(dq̄) =
∫

A(q̄)
µ(q)dq = Z−1

∫
A(q̄)

e−βU(q)dq, A(q̄) = {q ∈ R3N : Π(q) = q̄}. (2)

The quantity

ŪPMF(q̄) = − 1
β

ln
∫

A(q̄)
e−βU(q)dq,

is the M−body potential of mean force (PMF). The corresponding conservative force is thus F̄PMF(q̄) =
−∇ŪPMF(q̄). Although the above formula is exact, the accurate calculation of the PMF, for a realistic
model of a complex molecular system, is an extremely difficult task, due to the high dimensionality
of the integral, and of the M vector as well. For this reason, we develop methods in order to find an
effective potential in a parameterized form, Ūe f f (q̄; θ), θ ∈ Θ, which best approximates the PMF, i.e.:

Ūe f f (q̄; θ) ≈ ŪPMF(q̄) .

Moreover, we assume that the evolution of the particles is described by a continuous time process
{Xt}t≥0 = (qt, pt)t≥0, with path space distribution P[0,T], and invariant measure the Gibbs probability
(2). The approximate coarse space dynamics we adopt are described by a Markov process {X̄t}t≥0 in
Rm with a parametric path space distribution Q̄θ

[0,T] , θ ∈ Θ̃.

2.1. Information Theoretic Variational Inference: The Relative Entropy

Here we adopt the information theoretic variational inference approach as the methodology to derive
optimal approximate coarse models bot at equilibrium and dynamical regimes. This variational
approach encompasses the minimization of the Relative Entropy (RE) between probability measures.
The relative entropy (Kullback-Leibler divergence), [15], of two probability measures P(dω) and Q(dω)

on a common measurable space (Ω,B) is given by

R (P|Q) =
∫

Ω
log

dP(ω)

dQ(ω)
P(dω) , (3)
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provided P� Q, i.e., P is absolutely continuous with respect to Q, andR (P|Q) = +∞ otherwise. The
functionalR (P|Q) defines a pseudo-distance between two measures asR (P|Q) ≥ 0 andR (P|Q) = 0
if and only if P = Q, P-a.s. In the case these probability measures have corresponding probability
densities p(ω) and q(ω) relation (3) becomes R (P|Q) =

∫
Ω log p(ω)

q(ω)
p(ω)dω. The optimization

problem in path-space is,
min
θ∈Θ
R
(

Π∗P[0,T]|Q̄θ
[0,T]

)
, (4)

where Π∗µ denotes the push-forward of the microscopic measure µ. When the system is at equilibrium
the optimization principle is

min
θ∈Θ
R
(

Π∗µ|µ̄θ
)

.

When considering continuous time observations, in work [14] we prove that the path-space
minimization principle (4) reduces to the path-space force matching (PSFM). In stationary dynamics
the Relative Entropy Rate (RER) is the

H(P |Q) = lim
T→∞

1
T
R
(

Π∗P|Qθ
)

, (5)

where P and Q denote the corresponding stationary processes.
For discrete time observations (a) from the microscopic Gibbs density atDnt = {X1, . . . , Xnt} , and

(b) the path-space distribution P[0,T] at dynamical regimes, Dns ,nt = {Xk
1, . . . , Xk

nt}
ns
k=1 , encountering

the estimator for the relative entropy the optimal parameter estimate,[14], is given by

θ̂ = argmin
θ

ns

∑
k=1

nt

∑
i=1

log
p̄(ΠXk

i , ΠXk
i+1)

q̄θ(ΠXk
i , ΠXk

i+1)
. (6)

p̄ and q̄θ are microscopic and coarse space transition probability densities of the Markov processes Xt

and X̄t respectively. Note that if time series are stationary, the RER optimization is

θ̂ = argmax
θ

nt−1

∑
i=1

log qθ(ΠXi, ΠXi+1) (7)

2.2. Relative Entropy and Force-Matching

The Force-Matching (FM) method estimates an effective CG potential that reproduces best the
potential at the reference all-atom system, by solving the optimization problem

min
θ

Eµ

[
‖F(q)− F̄(Π(q); θ)‖2

]
, (8)

i.e., we minimize the average difference between the atomistic F(q) forces and the corresponding CG
forces F̄(Π(q); θ), where ‖ · ‖ denotes the Euclidean norm in R3M and Eµ[·] averages with respect to
the probability Gibbs measure µ(dq). The minimization problem for the discrete observations, and a
linear parametric representation of the force F̄(·; θ) = G(·)θ,

θ? = argmin
θ∈Θ

1
3M

1
nt

nt

∑
l=1

M

∑
I=1

∥∥∥∥∥FI(ql)−
Nd

∑
d=1

θdGI;d(Π(ql))

∥∥∥∥∥
2

. (9)

The path-space Force matching optimization problem is, [14],

θ∗(T) = argmin
θ

EP[0,T]

[
1

2σ2

∫ T

0

∥∥Πpf(qs)− F̄(Πqqs; θ)
∥∥2 ds

]
.
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for which the discrete optimization problem becomes

θ̂∗(T) = argmin
θ

1
3M

1
np

1
nt

nt

∑
l=1

M

∑
I=1

np

∑
n=1

∥∥∥∥∥FI(ql,n)−
Nd

∑
d=1

θdGI;d( q(ql,n))

∥∥∥∥∥
2

.

2.3. Relative Entropy and Structural-based Methods

The structural-based methods, (Direct inverse Boltzmann, DBI, Iterative Boltzmann Inversion,
and Inverse Monte Carlo (IMC)) methods use the pair correlation function g(2)(q̄) and the assumption
that the interactions depend only on the distance R between particles, that is g(2)(q̄) = ḡ(R). ḡ(R) is
called the radial distribution function. Thus the CG effective interaction is given by

Ūeff(R) = − 1
β

log ḡ(R) , (10)

where

ḡ(R) =
(M− 1)M

ρ2

∫
{x:Π(x)=Q}

1B(Q2,r)(Q1)µ(x)dx ,

that is the average density of finding the CG particle 1 at a distance R from the particle 2.
The structural methods are thus based on the pair correlation function between CG particle, in

contrast to the RE which is considering the total joint probability distribution of the CG particle. In
case the PMF can be exactly described by pair functions the the RE and structural methods coincide.

3. Results and Discussion

In the current section, we present the application of the variational inference methods, RE and
FM, for a few representative molecular systems: a simple fluid (bulk methane), a system of water
molecules and a polyethylene melt, at equilibrium conditions. We moreover study thebulk methane
system out-of equilibrium, specifically we apply the PSFM at a transient time regime.

3.1. Bulk Methane

The molecular system consists of 666 methane molecules at temperature T = 100 K. We employed
molecu;lar dynamics simulations to generate the microscopic space data for which we applied the
inference methods. Details on the atomistic simulations are given in [16]. For the coarse-grained
representation of methane we have used a one-site representation with a pair potential. The pair
potentials we have tested are (a) expansions with linear and cubic B-splines, with 48 parameters, and
(b) Lennard-Jones parametric form, with two parameters.

A comparison of the RE, FM, and IBI methods, is depicted in Figure 1, [17]. The result depicts
slight difference of the FM method to the RE and IBI.Figure 2 presents the performance of the FM and
PSFM methods at equilibrium verifying the validity of the PSFM and its reduction to the FM method.
A study at transient time regimes is presented in work [16].
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Figure 1. Methane: The effective pair potential for a one-site methane melt, derived with the RER, FM,
and IBI methods.
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Figure 2. Methane: The FM and PSFM methods at equilibrium. (a)The FM pair force with linear and
cubic B-splines, and Lennard-Jones parametrizations. (b)The PSFM reproduces the FM method.

3.2. Water

The model system consists of 1192 molecules at ambient conditions (T = 300 K, P = 1 atm).
Details on the atomistic simulations are given in [17]. For the coarse-grained representation of H2O,
we have also used a one-site representation with a pair potential. Figure 3 a depicts the resulting
pair potential obtained with the RE and FM methods. The RE and FM potentials have a very similar
structure with two minima, though the actual values of the potential are different. In Figure 3b shows
that the pair correlation function derived by CG simulations with the RE potential and the target one
(from atomistic simulations) are very close, that the RE potential can reproduce with sufficient accuracy
the pair correlation.
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Figure 3. Water: (a) The effective pair potential with RE and FM (b) RE derived potential reproduces
well the target pair correlation

3.3. Polyethylene Melt

The model system consists of 96 polyethylene chains of 99 monomer units (−CH2− ), i.e., N =

9504. The simulations were performed under NVT conditions at temperature T = 450 K. For the
coarse-grained representation we consider a 3 : 1 mapping representation, i.e. three monomer units
form one CG particle. With this application we study the effect of the size of the available observations
(system configurations), and quantify uncertainties due to the small number of observations. Figure 4a
depicts the derived FM potential for a large set of observations. In addition, Figure 4b shows the 95%
confidence set obtained with a statistical analysis resampling technique (bootstrap method) of a small
observations set, which captures the large-set outcome.

Figure 4. Polyethylene: (a)The FM potential for linear and cubic B-splines, for a set of 2000 observations
(b) 95% Bootstrap Confidence interval for the FM potential, with a set of 200 observations and cubic
B-splines.

4. Conclusions

In the current work we presented a short review of the information theoretic variational inference
method for coarse-graining molecular systems, for systems at- and out-of- equilibrium. Moreover, we
presented the connection to the Force Matching method and its relation to the structural based methods.
The application of all methods to the methane system shows that the RE and IBI methods give similar
results while the FM differs slightly. While for the water model the RE and FM resulting potentials
differ substantially, which is not surprising as we know that the two methods are equivalent only
asymptotically. We verify the validity of the PSFM, i.e. deriving the piar potential using time-series
data, as it gives the same results to the FM, i.e., with identically distributed data. Finally, with the
application to the polyethylene system, we show that when the availability of observations is limited
the bootstrapping method can provide reliable confidence intervals to the pair potential.
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